Электрический ток в различных средах презентация

Содержание


Презентации» Физика» Электрический ток в различных средах
Презентация на тему: “Электрический ток в различных средах”Электрический ток может протекать в пяти различных средах:
 Металлах 
 Вакууме
Электрический ток в металлах:
 Электрический ток в металлах – это упорядоченноеОпыты Толмена и Стюарта являются доказательством того, что металлы обладают электроннойВывод:1.носителями заряда в металлах являются электроны;
 2. процесс образования носителей зарядаЭлектрический ток в вакууме
 Вакуум - сильно разреженный газ, в которомТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ – это явление «испарения» электронов с поверхности нагретого металла.
На слайде показано включение двухэлектродной лампы
 Такая лампа называется вакуумный диодЭта электронная лампа носит название вакуумный ТРИОД.
 Она имеет третий электродВыводы:1. носители заряда – электроны;
 2. процесс образования носителей заряда –Электрический ток в полупроводниках
 При нагревании или освещении некоторые электроны приобретаютС понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижениемСобственная проводимость полупроводников
 Атомы германия имеют четыре слабо связанных электрона наОбразование электронно-дырочной пары  
 При повышении температуры или увеличении освещенностиПримесная проводимость полупроводников
 Проводимость полупроводников при наличии примесей называется примесной проводимостью.Электронная и дырочная проводимости. 
 Если примесь имеет валентность большую, чемВыводы:1. носители заряда – электроны и дырки;
 2. процесс образования носителейЭлектрический ток в жидкостях
 Электролитами принято называть проводящие среды, в которыхСопротивление электролитов падает с ростом температуры, так как с ростом температурыЯвление электролиза 
 - это выделение на электродах веществ, входящих вЗаконы электролиза Фарадея.   
 Законы электролиза определяют массу вещества,Вывод:1. носители заряда – положительные и отрицательные ионы;
 2. процесс образованияЭлектрический ток в газах
 Зарядим конденсатор и подключим его обкладки кПрохождение электрического тока через газ называется разрядом.
 Разряд, существующий при действииВиды самостоятельного разряда:
 ИСКРОВОЙ
 ТЛЕЮЩИЙ
 КОРОННЫЙ
 ДУГОВОЙИскровой разряд
  При достаточно большой напряженности поля (около 3 МВ/м)Молния. Красивое и небезопасное явление природы – молния – представляет собойЭлектрическая дуга (дуговой разряд)
 В 1802 году русский физик В.В. ПетровВывод:1. носители заряда – положительные, отрицательные ионы и электроны;
 2. процессСписок литературы:
 1. Кабардин О.Ф. Физика: Справ. материалы. Учеб. пособие для



Слайды и текст этой презентации
Слайд 1
Описание слайда:
Презентация на тему: “Электрический ток в различных средах”


Слайд 2
Описание слайда:
Электрический ток может протекать в пяти различных средах: Металлах Вакууме Полупроводниках Жидкостях Газах

Слайд 3
Описание слайда:
Электрический ток в металлах: Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Слайд 4
Описание слайда:
Опыты Толмена и Стюарта являются доказательством того, что металлы обладают электронной проводимостью Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией электронов.

Слайд 5
Описание слайда:
Вывод:1.носителями заряда в металлах являются электроны; 2. процесс образования носителей заряда – обобществление валентных электронов; 3.сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника – выполняется закон Ома; 4. техническое применение электрического тока в металлах: обмотки двигателей, трансформаторов, генераторов, проводка внутри зданий, сети электропередачи, силовые кабели.

Слайд 6
Описание слайда:
Электрический ток в вакууме Вакуум - сильно разреженный газ, в котором средняя длина свободного пробега частицы больше размера сосуда, то есть молекула пролетает от одной стенки сосуда до другой без соударения с другими молекулами. В результате в вакууме нет свободных носителей заряда, и электрический ток не возникает. Для создания носителей заряда в вакууме используют явление термоэлектронной эмиссии.

Слайд 7
Описание слайда:
ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ – это явление «испарения» электронов с поверхности нагретого металла. В вакуум вносят металлическую спираль, покрытую оксидом металла, нагревают её электрическим током (цепь накала) и с поверхности спирали испаряются электроны, движением которых можно управлять при помощи электрического поля.

Слайд 8
Описание слайда:
На слайде показано включение двухэлектродной лампы Такая лампа называется вакуумный диод

Слайд 9
Описание слайда:
Эта электронная лампа носит название вакуумный ТРИОД. Она имеет третий электрод –сетку, знак потенциала на которой управляет потоком электронов .

Слайд 10
Описание слайда:
Выводы:1. носители заряда – электроны; 2. процесс образования носителей заряда – термоэлектронная эмиссия; 3.закон Ома не выполняется; 4.техническое применение – вакуумные лампы (диод, триод), электронно – лучевая трубка.

Слайд 11
Описание слайда:
Электрический ток в полупроводниках При нагревании или освещении некоторые электроны приобретают возможность свободно перемещаться внутри кристалла, так что при приложении электрического поля возникает направленное перемещение электронов. полупроводники представляют собой нечто среднее между проводниками и изоляторами.

Слайд 12
Описание слайда:
С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами. Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T.

Слайд 13
Описание слайда:
Собственная проводимость полупроводников Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам .Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

Слайд 14
Описание слайда:
Образование электронно-дырочной пары При повышении температуры или увеличении освещенности некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название «дырок».

Слайд 15
Описание слайда:
Примесная проводимость полупроводников Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную проводимости.

Слайд 16
Описание слайда:
Электронная и дырочная проводимости. Если примесь имеет валентность большую, чем чистый полупроводник, то появляются свободные электроны. Проводимость –электронная, примесь донорная, полупроводник n – типа.

Слайд 17
Описание слайда:
Выводы:1. носители заряда – электроны и дырки; 2. процесс образования носителей заряда – нагревание, освещение или внедрение примесей; 3.закон Ома не выполняется; 4.техническое применение – электроника.

Слайд 18
Описание слайда:
Электрический ток в жидкостях Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитами являются водные растворы неорганических кислот, солей и щелочей.

Слайд 19
Описание слайда:
Сопротивление электролитов падает с ростом температуры, так как с ростом температуры растёт количество ионов. График зависимости сопротивления электролита от температуры.

Слайд 20
Описание слайда:
Явление электролиза - это выделение на электродах веществ, входящих в электролиты; Положительно заряженные ионы (анионы) под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные ионы (катионы) - к положительному аноду. На аноде отрицательные ионы отдают лишние электроны (окислительная реакция ) На катоде положительные ионы получают недостающие электроны (восстановительная ).

Слайд 21
Описание слайда:
Законы электролиза Фарадея. Законы электролиза определяют массу вещества, выделяемого при электролизе на катоде или аноде за всё время прохождения электрического тока через электролит.

Слайд 22
Описание слайда:
Вывод:1. носители заряда – положительные и отрицательные ионы; 2. процесс образования носителей заряда – электролитическая диссоциация; 3.электролиты подчиняются закону Ома; 4.Применение электролиза : получение цветных металлов (очистка от примесей - рафинирование); гальваностегия - получение покрытий на металле (никелирование, хромирование, золочение, серебрение и т.д. ); гальванопластика - получение отслаиваемых покрытий (рельефных копий).

Слайд 23
Описание слайда:
Электрический ток в газах Зарядим конденсатор и подключим его обкладки к электрометру. Заряд на пластинах конденсатора держится сколь угодно долго, не наблюдается перехода заряда с одной пластины конденсатора на другую. Следовательно воздух между пластинами конденсатора не проводит ток. В обычных условиях отсутствует проводимость электрического тока любыми газами. Нагреем теперь воздух в промежутке между пластинами конденсатора, внеся в него зажженную горелку. Электрометр укажет появление тока, следовательно при высокой температуре часть нейтральных молекул газа распадается на положительные и отрицательные ионы. Такое явление называется ионизацией газа.

Слайд 24
Описание слайда:
Прохождение электрического тока через газ называется разрядом. Разряд, существующий при действии внешнего ионизатора, - несамостоятельный. Если действие внешнего ионизатора продолжается, то через определенное время в газе устанавливается внутренняя ионизация (ионизация электронным ударом) и разряд становится самостоятельным.

Слайд 25
Описание слайда:
Виды самостоятельного разряда: ИСКРОВОЙ ТЛЕЮЩИЙ КОРОННЫЙ ДУГОВОЙ

Слайд 26
Описание слайда:
Искровой разряд При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск.

Слайд 27
Описание слайда:
Молния. Красивое и небезопасное явление природы – молния – представляет собой искровой разряд в атмосфере. Уже в середине 18-го века высказывалось предположение, что грозовые облака несут в себе большие электрические заряды и что молния есть гигантская искра, ничем, кроме размеров, не отличающаяся от искры между шарами электрической машины. На это указывал, например, русский физик и химик Михаил Васильевич Ломоносов (1711-1765), наряду с другими научными вопросами занимавшийся атмосферным электричеством.

Слайд 28
Описание слайда:
Электрическая дуга (дуговой разряд) В 1802 году русский физик В.В. Петров (1761-1834) установил, что если присоединить к полюсам большой электрической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их раздвинуть, то между концами углей образуется яркое пламя, а сами концы углей раскалятся добела, испуская ослепительный свет.

Слайд 29
Описание слайда:
Вывод:1. носители заряда – положительные, отрицательные ионы и электроны; 2. процесс образования носителей заряда – ионизация внешним ионизатором или электронным ударом; 3.газы не подчиняются закону Ома; 4.Техническое применение: дуговая электросварка, коронные фильтры, искровая обработка металлов, лампы дневного света и газосветная реклама.

Слайд 30
Описание слайда:
Список литературы: 1. Кабардин О.Ф. Физика: Справ. материалы. Учеб. пособие для учащихся. – 5-е изд., перераб. и доп. – М.: Просвещение, 2003.


Скачать презентацию на тему Электрический ток в различных средах можно ниже:

Похожие презентации