Приемы доказательства неравенств, содержащих переменные

Содержание


Презентации» Математика» Презентация Приемы доказательства неравенств, содержащих переменные
Приемы доказательства неравенств, содержащих переменные
 Автор: Жагалкович Полина Сергеевна
 Учебное заведение:Если вы хотите участвовать в большой жизни, то наполняйте свою головуПредставление левой части неравенства в виде суммы неотрицательных слагаемых (правая частьПример 2. Доказать, что для любых x и y 
 
2. Метод от противного
 Вот хороший пример применения данного метода.
 Доказать,Пример 5. Доказать, что для любых чисел А,В,С справедливо неравенство
 
Пусть теперь нашлись такие неотрицательные числа А, В и С, дляИспользование свойств квадратного трехчлена
 Метод основан на свойстве неотрицательности квадратного трехчленаПример 7. Доказать, что для любых действительных х и у имеетПример 8. Доказать, что
 для любых действительных значениях х и у.
Метод введения новых переменных или метод подстановки
 Пример 9. Доказать, чтоИспользование свойств функций.
 Пример 10. Докажем неравенство
 для любых а иПример 11. Докажем, что для любых
 
 Доказательство. 
 		 наПрименение метода математической индукции
 Данный метод применяется для доказательства неравенств относительно3) Докажем истинность утверждения при n=k+1.
 Сравним    Использование замечательных неравенств
 Теорема о средних (неравенство Коши)
 Неравенство Коши –Применение теоремы о средних (неравенства Коши)
 Среднее арифметическое нескольких неотрицательных чиселПусть n=2,	   ,	    , тогда
 ПустьНеравенство Коши - Буняковского
 Неравенство Коши - Буняковского утверждает, что дляПример 14. Доказать, что для любых a,b,c ϵ R справедливо неравенство
Неравенство Бернулли
 Неравенство Бернулли утверждает, что если х>-1, то для всехПример 16. Доказать, что для любых n ϵ N
 
 Доказательство.			ПоложивДавида Гильберта спросили об одном из его бывших учеников. "А, такой-то?



Слайды и текст этой презентации
Слайд 1
Описание слайда:
Приемы доказательства неравенств, содержащих переменные Автор: Жагалкович Полина Сергеевна Учебное заведение: МОУ Лицей№1 г.Комсомольск-на-Амуре Адрес автора: Хабаровский край, с.п. «Село Хурба» ул.Добровольского, ДОС 2-10 Руководитель: Будлянская Наталья Леонидовна


Слайд 2
Описание слайда:
Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет вам потом огромную помощь во всей вашей работе. (М.И. Калинин)

Слайд 3
Описание слайда:
Представление левой части неравенства в виде суммы неотрицательных слагаемых (правая часть равна 0) с использованием тождеств. Пример 1. Доказать что для любого хϵR Доказательство. 1 способ. 2 способ. для квадратичной функции что означает её положительность при любом действительном х.

Слайд 4
Описание слайда:
Пример 2. Доказать, что для любых x и y Доказательство. Пример 3. Доказать, что Доказательство. Пример 4. Доказать, что для любых a и b Доказательство.

Слайд 5
Описание слайда:
2. Метод от противного Вот хороший пример применения данного метода. Доказать, что для a, b ϵ R. Доказательство. Предположим, что . Но ,что явно доказывает, что наше предположение неверно. Ч.Т.Д.

Слайд 6
Описание слайда:
Пример 5. Доказать, что для любых чисел А,В,С справедливо неравенство Доказательство. Очевидно, что данное неравенство достаточно установить для неотрицательных А, В и С, так как будем иметь следующее отношения: , что является обоснованием исходного неравенства.

Слайд 7
Описание слайда:
Пусть теперь нашлись такие неотрицательные числа А, В и С, для которых выполняется неравенство , что невозможно ни при каких действительных А,В и С. Сделанное выше предположение опровергнуто, что доказывает исследуемое исходное неравенство.

Слайд 8
Описание слайда:
Использование свойств квадратного трехчлена Метод основан на свойстве неотрицательности квадратного трехчлена , если и . Пример 6. Доказать, что Доказательство. Пусть , a=2, 2>0 =>

Слайд 9
Описание слайда:
Пример 7. Доказать, что для любых действительных х и у имеет место быть неравенство Доказательство. Рассмотрим левую часть неравенство как квадратный трехчлен относительно х: , а>0, D<0 D= => P(x)>0 и верно при любых действительных значениях х и у.

Слайд 10
Описание слайда:
Пример 8. Доказать, что для любых действительных значениях х и у. Доказательство. Пусть , Это означает, что для любых действительных у и неравенство выполняется при любых действительных х и у.

Слайд 11
Описание слайда:
Метод введения новых переменных или метод подстановки Пример 9. Доказать, что для любых неотрицательных чисел х, у, z Доказательство. Воспользуемся верным неравенством для , , . Получаем исследуемое неравенство

Слайд 12
Описание слайда:
Использование свойств функций. Пример 10. Докажем неравенство для любых а и b. Доказательство. Рассмотрим 2 случая: Если а=b,то верно причем равенство достигается только при а=b=0. 2)Если , на R => ( )* ( )>0, что доказывает неравенство

Слайд 13
Описание слайда:
Пример 11. Докажем, что для любых Доказательство. на R. Если , то знаки чисел и совпадают, что означает положительность исследуемой разности =>

Слайд 14
Описание слайда:
Применение метода математической индукции Данный метод применяется для доказательства неравенств относительно натуральных чисел. Пример 12. Доказать, что для любого nϵN Проверим истинность утверждения при - (верно) 2) Предположим верность утверждения при (k>1)

Слайд 15
Описание слайда:
3) Докажем истинность утверждения при n=k+1. Сравним и : , Имеем: Вывод: утверждение верно для любого nϵN.

Слайд 16
Описание слайда:
Использование замечательных неравенств Теорема о средних (неравенство Коши) Неравенство Коши – Буняковского Неравенство Бернулли Рассмотрим каждое из перечисленных неравенств в отдельности.

Слайд 17
Описание слайда:
Применение теоремы о средних (неравенства Коши) Среднее арифметическое нескольких неотрицательных чисел больше или равно их среднего геометрического , где Знак равенства достигается тогда и только тогда, когда Рассмотрим частные случаи этой теоремы:

Слайд 18
Описание слайда:
Пусть n=2, , , тогда Пусть n=2, a>0, тогда Пусть n=3, , , , тогда Пример 13. Доказать, что для всех неотрицательных a,b,c выполняется неравенство Доказательство.

Слайд 19
Описание слайда:
Неравенство Коши - Буняковского Неравенство Коши - Буняковского утверждает, что для любых ; справедливо соотношение Доказанное неравенство имеет геометрическую интерпретацию. Для n=2,3 оно выражает известный факт, что скалярное произведение двух векторов на плоскости и в пространстве не превосходит произведение их длин. Для n=2 неравенство имеет вид: . Для n=3 получим

Слайд 20
Описание слайда:
Пример 14. Доказать, что для любых a,b,c ϵ R справедливо неравенство Доказательство. Запишем исследуемое неравенство в следующем виде: Это заведомо истинное неравенство, так как является частным случаем неравенства Коши – Буняковского. Пример 15. Доказать, что для любых a,b,c ϵ R справедливо неравенство Доказательство. Достаточно записать данное неравенство в виде и сослаться на неравенство Коши – Буняковского.  

Слайд 21
Описание слайда:
Неравенство Бернулли Неравенство Бернулли утверждает, что если х>-1, то для всех натуральных значений n выполняется неравенство Неравенство может применяться для выражений вида Кроме того, очень большая группа неравенств может быть легко доказана с помощью теоремы Бернулли.

Слайд 22
Описание слайда:
Пример 16. Доказать, что для любых n ϵ N Доказательство. Положив х=0,5 и применив теорему Бернулли для выражения , получим требуемое неравенство. Пример 17. Доказать, что для любых n ϵ N Доказательство. по теореме Бернулли, что и требовалось.

Слайд 23
Описание слайда:
Давида Гильберта спросили об одном из его бывших учеников. "А, такой-то? - вспомнил Гильберт. - Он стал поэтом. Для математики у него было слишком мало воображения.


Презентация на тему Приемы доказательства неравенств, содержащих переменные доступна для скачивания ниже:

Похожие презентации