Презентация, доклад Currents in мetals
Вы можете изучить и скачать доклад-презентацию на
тему Currents in мetals.
Презентация на заданную тему содержит 36 слайдов. Для просмотра воспользуйтесь
проигрывателем,
если материал оказался полезным для Вас - поделитесь им с друзьями с
помощью социальных кнопок и добавьте наш сайт презентаций в закладки!
Презентации»
Физика»
Currents in мetals
Слайды и текст этой презентации
Слайд 4


Описание слайда:
Drift speed of electrons
There is a zigzag motion of an electron in a conductor. The changes in direction are the result of collisions between the electron and atoms in the conductor. The net motion – drift speed of the electron is opposite the direction of the electric field.
Слайд 6


Описание слайда:
Current in metals
Every atom in the metallic crystal gives up one or more of its outer electrons. These electrons are then free to move through the crystal, colliding at intervals with stationary positive ions, then the resistivity is:
= m/(ne2)
n - the number density of free electrons,
m and e – mass and charge of electron,
– average time between collisions.
Слайд 12


Описание слайда:
Magnet Force
The magnitude FB of the magnetic force exerted on the particle is proportional to the charge q and to the speed v of the particle.
The magnitude and direction of FB depend on the velocity of the particle and on the magnitude and direction of the magnetic field B.
When a charged particle moves parallel to the magnetic field vector, the magnetic force acting on the particle is zero.
When the particle’s velocity vector makes any angle 0 with the magnetic field, the magnetic force acts in a direction perpendicular to both v and B.
The magnetic force exerted on a positive charge is in the direction opposite the direction of the magnetic force exerted on a negative charge moving in the same direction.
The magnitude of the magnetic force exerted on the moving particle is proportional to sin , where is the angle the particle’s velocity vector makes with the direction of B.
Слайд 16


Описание слайда:
Magnetic Force on a Current
Magnetic force is exerted on a single charge moving in a magnetic field. A current-carrying wire also experiences a force when placed in a magnetic field. This follows from the fact that the current is a collection of many charged particles in motion; hence, the resultant force exerted by the field on the wire is the vector sum of the individual forces exerted on all the charges making up the current. The force exerted on the particles is transmitted to the wire when the particles collide with the atoms making up the wire.
Слайд 20


Описание слайда:
Magnetic force on a straight wire
So, the force on a straight wire in a uniform magnetic field is:
is a vector multiplication.
Where L is a vector that points in the direction of the current I and has a magnitude equal to the length L of the segment. This expression applies only to a straight segment of wire in a uniform magnetic field.
Слайд 22


Описание слайда:
Current Loop Torque in a Uniform Magnetic Field
- Overhead view of a rectangular loop in a uniform magnetic field.
Sides 1 and 3 are parallel to magnetic field, so only sides 2 and for experiences magnetic forces.
- Magnet forces, acting on sides 2 and 4 create a torque on the loop.
Слайд 24


Описание слайда:
When the loop is not parallel to the magnetic field, i.e. the angle between A and B is < 90° then:
When the loop is not parallel to the magnetic field, i.e. the angle between A and B is < 90° then:
So the torque on a loop in a uniform magnetic field is:
This formula is correct not only for a rectangular loop, but for a planar loop of any shape.
Слайд 25


Описание слайда:
Area Vector
In formula for torque
we have vector A:
- Its direction is perpendicular to the plane of the loop,
- its magnitude is equal to the area of the loop.
We determine the direction of A using the right-hand rule. When you curl the fingers of your right hand in the direction of the current in the loop, your thumb points in the direction of A.
Слайд 29


Описание слайда:
Motion of a Charged Particle in a Uniform Magnetic Field
When the velocity of a charged particle is perpendicular to a uniform magnetic field, the particle moves in a circular path in a plane perpendicular to B. The magnetic force FB acting on the charge is always directed toward the center of the circle.
Слайд 33


Описание слайда:
the magnetic force exerted on the carriers has magnitude qvdB.
the magnetic force exerted on the carriers has magnitude qvdB.
this force is balanced by the electric force qEH:
d is the width of the conductor:
n – charge density: .vd - charge carrier drift speed.
then we obtain the Hall voltage:
Слайд 35


Описание слайда:
When the charge carriers in a Hall-effect apparatus are negative, the upper edge of the conductor becomes negatively charged, and c is at a lower electric potential than a.
When the charge carriers in a Hall-effect apparatus are negative, the upper edge of the conductor becomes negatively charged, and c is at a lower electric potential than a.
When the charge carriers are positive, the upper edge becomes positively charged, and c is at a higher potential than a.
Скачать презентацию на тему Currents in мetals можно ниже:
Похожие презентации

Презентация Давление на дне морей...
1511 просмотров

Презентация Электромагнитная прир...
2455 просмотров

Презентация Расчет сопротивления ...
1356 просмотров

Презентация Виды излучений
1058 просмотров

Презентация Конспект и презентаци...
804 просмотра

Презентация Светодиоды
7771 просмотр

Презентация Магнитное поле и его ...
2124 просмотра

Презентация Тепловое движение. Вн...
1115 просмотров

Презентация Криволинейное движени...
1253 просмотра

Презентация Принцип Гюйгенса. Зак...
1128 просмотров

Презентация Теория фотоэффекта
1602 просмотра

Презентация Механика Ньютона
1531 просмотр

Презентация Фотоэффект (11 класс)
1707 просмотров

Презентация Использование информа...
793 просмотра

Презентация Затухающие колебания
668 просмотров

Презентация Давление газов. Закон...
894 просмотра

Презентация Тепловые электростанц...
1536 просмотров

Презентация Силы всемирного тягот...
1149 просмотров

Презентация Законы постоянного то...
1069 просмотров

Презентация Влияние магнитных пол...
1163 просмотра

Презентация Перспективы развития ...
2099 просмотров

Презентация Интерференция. Дифрак...
2785 просмотров

Презентация Скорость механическог...
1332 просмотра

Презентация Действие электрическо...
1282 просмотра

Презентация Второй закон Ньютона
1027 просмотров

Презентация Прямолинейное равноус...
987 просмотров

Презентация Ядерная физика (9 кла...
1780 просмотров

Презентация Электромагнитные коле...
1401 просмотр

Презентация Сила тока
2347 просмотров

Презентация Теория вероятностей. ...
1260 просмотров
114809114787114803114789114790114797114788114806114811114799114783114786114810114795114812114805114796114804114808114792114800114785114784114801114793114794114791114798114802114807
Отправить презентацию на почту
0%
Презентация успешно отправлена!
Ошибка! Введите корректный Email!