Презентация, доклад Lecture # 11 PV1. Solar Photovoltaics, AUA Solar System


Вы можете изучить и скачать доклад-презентацию на тему Lecture # 11 PV1. Solar Photovoltaics, AUA Solar System. Презентация на заданную тему содержит 121 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!
Презентации» Физика» Lecture # 11 PV1. Solar Photovoltaics, AUA Solar System
500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500



Слайды и текст этой презентации
Слайд 1
Описание слайда:
Solar Photovoltaics, AUA Solar System IE350

Слайд 2
Описание слайда:
Photovoltaics - PV Photo Voltaic effect – phenomenon, when light energy directly converts into electricity. First was detected in 1839 by French physicist Alexandre-Edmond Becquerel. A quintessential source of energy – operation is absolutely clean environmentally, no moving parts. However its production process is not perfect, but overall PV performs environmentally much better than any other source.


Слайд 3
Описание слайда:
Trend: PV capacity growth EPIA - European Photovoltaic Industry Association - forecast 2014-2018

Слайд 4
Описание слайда:
Photovoltaics: Principles Introduction - Quantum mechanics Physical principles of Photovoltaic (PV) Conversion Efficiency, degradation, price Various realizations: - flat panel - concentrator - tracking/non-tracking Materials: Si, Thin film

Слайд 5
Описание слайда:
Popular Quantum Mechanics Interference of Particles. Bohr’s model of atom. Energy states in a crystal. Metals, semiconductors, insulators. P-N-Junction PV modules PV system components.

Слайд 6
Описание слайда:
Electromagnetic (EM) radiation

Слайд 7
Описание слайда:
Dualism of EM radiation EM radiation exhibits both wave behavior and particle behavior

Слайд 8
Описание слайда:
Double slit experiment LIGHT

Слайд 9
Описание слайда:
Double slit experiment Electrons

Слайд 10
Описание слайда:
Bohr’s model of atom.

Слайд 11
Описание слайда:
Electron can change its “orbital” by receiving or releasing a photon or thermal energy.

Слайд 12
Описание слайда:
Absorption only happen if the photon energy match the atom’s energy discrete values! Emission generates a photon with strictly discrete value.

Слайд 13
Описание слайда:

Слайд 14
Описание слайда:
Atom Energy Levels Isolated atom’s energy levels correspond to the orbitals The Pauli exclusion principle is the quantum mechanical principle that states that two or more identical fermions (particles with half-integer spin - electrons in our case) cannot occupy the same quantum state within a quantum system simultaneously.

Слайд 15
Описание слайда:
A system of two atoms N=2 Energy levels are split into two levels

Слайд 16
Описание слайда:
N – atom system

Слайд 17
Описание слайда:
Solid body – crystalline lattice:

Слайд 18
Описание слайда:
When N >>, e.g. in solid bodies, 1023 atom per cm3.

Слайд 19
Описание слайда:

Слайд 20
Описание слайда:
Electronic Energy Bands In solids the atomic energy levels turn into bands

Слайд 21
Описание слайда:
Metal vs. Semiconductor, vs. Insulator

Слайд 22
Описание слайда:
At non-zero temperatures,

Слайд 23
Описание слайда:

Слайд 24
Описание слайда:
Silicon crystal structure

Слайд 25
Описание слайда:
P-N-Junction P-N-Junctions have the ability to form built in electric field in the space charge region.

Слайд 26
Описание слайда:
PV power generation

Слайд 27
Описание слайда:

Слайд 28
Описание слайда:

Слайд 29
Описание слайда:
Now, what will happen if a semicon-ductor structure’s p-n-junction is bombar-ded with photons?

Слайд 30
Описание слайда:
P-N-Junction The interface of the p-doped and n-doped semiconductors is called P-N-Junction P-N-Junction in fact is a diode P-N-Junction has a built in electric field, without spending any electric power P-N-Junction electric field separates the photogenerated electron-hole pairs, and creates external voltage and current.

Слайд 31
Описание слайда:

Слайд 32
Описание слайда:
Summary of physical principles of Photovoltaic (PV) Conversion

Слайд 33
Описание слайда:
P-N-Junction

Слайд 34
Описание слайда:
PV power generation

Слайд 35
Описание слайда:
Light emission diode = LED LED performs the opposite function – converts electric power into visible light. Conversion is performed due to recombinative radiation

Слайд 36
Описание слайда:
Sensitivity Spectrum Why PV cells are sensitive to light spectrum? What will happen if a photon, with energy of h ≤ Eg will hit the semiconductor? Semiconductor will be transparent to this radiation.

Слайд 37
Описание слайда:
Sensitivity Spectrum – via wavelength or equivalent via photon energy

Слайд 38
Описание слайда:
Summary of physical principles of Photovoltaic (PV) Conversion

Слайд 39
Описание слайда:
Summary of physical principles of Photovoltaic (PV) Conversion

Слайд 40
Описание слайда:
Factors Influencing Efficiency Semiconductor related Percentage of spectral overlapping Quantum efficiency, Absorption depth vs. p-n-junction depth and thickness Recombination of electrons and holes in the bulk of Si: diffusion length L or lifetime . The reverse current in the p-n-junction, because of recombination

Слайд 41
Описание слайда:
Percentage of spectral overlapping

Слайд 42
Описание слайда:
Spectrum vs. Energy

Слайд 43
Описание слайда:
Absorption depth vs. p-n-junction depth and thickness

Слайд 44
Описание слайда:
Recombination of electrons and holes

Слайд 45
Описание слайда:
The reverse current in the p-n-junction – defects inside SCR that enhance recombination, i.e. loss of electron-hole pairs.

Слайд 46
Описание слайда:
Shockley-Queisser Limit

Слайд 47
Описание слайда:
Factors Influencing Efficiency Factors outside the semiconductor Surface reflectance Shading by collecting electrode, effective surface. Optical Fill Factor (OFF). Unbalanced load – non-maximal power point. Electrical Fill Factor (EFF).

Слайд 48
Описание слайда:
Surface reflectance By the semiconductor surface By the weather encapsulation By the low-iron, tempered glass Anty-reflective coatings decrease the reflectance but are expensive.

Слайд 49
Описание слайда:
Optical Fill Factor (OFF) The area that is open for the radiation Shading by collecting electrode Effective surface of the module Distance between modules Distance between rows in the solar field The solar system total area

Слайд 50
Описание слайда:
Electrical Fill Factor (EFF) is the Preal/(IscVoc), Isc = short circuit current, Voc = open circuit voltage

Слайд 51
Описание слайда:
Max Power Point

Слайд 52
Описание слайда:
Organic PV cell test, AUA

Слайд 53
Описание слайда:
Types of Solar Converters Crystalline Silicon: Single-crystal (c-Si) – eff 22% Crystalline Silicon: Multi-crystalline (mc-Si) or Poly-crystalline Si (poly-Si) – eff 17% Amorphous Silicon (Si-A) – eff 9%, degradation. All Si technologies make 86% of the market. Thin Film: CdTe is easier to deposit and more suitable for large-scale production. Eff = ususally 6%-10%, up to 15.8% in experiments. Copper Indium Gallium Selenide (CIGS) are multi-layered thin-film heterojunction composites. 19.5% Potentially up to around 30%, could be put on polyamide base. Multijunction stacks - Gallium arsenide (GaAs), eff = 47%!!! - space applications. Albeit extremely expensive, - thus uses in the concentrated PV

Слайд 54
Описание слайда:
PV cell materials in the market Market share percentage of PV cell technologies installed in Malaysia until the end of December 2010 Production by country, 2012

Слайд 55
Описание слайда:
PV cell materials in the market Market share percentage of PV cell technologies installed in Malaysia until the end of December 2010 Production by country, 2012

Слайд 56
Описание слайда:
Efficiency In 1884 the first Selenium Solar cell had 1% efficiency. The theoretical maximum is 64% for stacked PV structures! The real, economically productive values are 16% - 24%.

Слайд 57
Описание слайда:
Stacked multi junction solar cells

Слайд 58
Описание слайда:
Stacked multi junction – MJ – solar cells

Слайд 59
Описание слайда:

Слайд 60
Описание слайда:
Components of the PV System Photovoltaic (PV) panels Battery Bank Charge controllers Invertors Load

Слайд 61
Описание слайда:

Слайд 62
Описание слайда:
PV System calculation approach for net metering case Find out from your monthly bills your total annual kWh-s of consumption - Ee. Find out your local monitoring data – amount of global horizontal (GH) kWh-s (Em). At tilted angle (30⁰ for Yerevan) you can have more than 20% advantage, reaching 1800 kWh/m2 annually. However due to shading or other losses – you will need to make an assessment – you can take for Em e.g. 1500 kWh/m2 for calculation. Remember that since @ 100% efficiency your modules 1 m2 corresponds to 1 kW of rated power, the Ee/Em = PS your needed system power capacity. E.g. @ Ee= 3000; Em e.g.= 1500 kWh/m2 annually, PS = 2 kW. Here 1500 kWh/m2 is replaced by 1500 kWh/kW. Homework: calculated the price of your system, look at previous slide.

Слайд 63
Описание слайда:
Types of Solar Converters Photoelectrochemical cells – now up to eff of 10% in experiments. Polymer solar cells = 4-5% nanocrystal Si (nc-Si) solar cells, quantum dot technology

Слайд 64
Описание слайда:
Concentration PV Photovoltaic concentrators have the added benefit of an increase in efficiency due to the nature of solar cells. Commercial solar cells operate with an efficiency of around 15% in standard sunlight, however when the sunlight is concentrated the efficiency can go above 21%. Concentrators reduce the cost. Solar cell are fairly expensive, however mirror and optics are much cheaper. So a small solar cell concentrated can produce more energy with mirrors or optics than the equivalent area with a larger solar array.

Слайд 65
Описание слайда:
Multi-junction Solar cells under illumination of at least 400 suns, MJ solar panels become practical

Слайд 66
Описание слайда:
Amonix concentration systems

Слайд 67
Описание слайда:
BIPV

Слайд 68
Описание слайда:
BIPV Similarly, if it is possible to use part of the windows or glazing of the construction to integrate PV cells inside, one can avoid paying for the PV modules’ glazing the second time, as well as economize on the support structure. At the same time the Integrated PV is an innovative, aesthetically interesting element that can be a part of the architectural idea - recently popular PV module placement location is the south facing portions of the building envelop, perfectly helping to address both economizing dimensions of the integrated PV.

Слайд 69
Описание слайда:
Efficiency In 1884 the first Selenium Solar cell had 1% efficiency. The theoretical maximum is 64% for stacked PV structures! The real, economically productive values are 16% - 24%.

Слайд 70
Описание слайда:

Слайд 71
Описание слайда:
2009 vs 2003

Слайд 72
Описание слайда:
03 November, 2011

Слайд 73
Описание слайда:
20 November, 2012

Слайд 74
Описание слайда:
11 November 2013

Слайд 75
Описание слайда:
November 2014

Слайд 76
Описание слайда:
November 2015

Слайд 77
Описание слайда:
How to compare solar cells? Efficiency Longevity – time to degradation Peak watt price

Слайд 78
Описание слайда:
Notion of the peak power price (PPP) Price of a cell, module or a system, per conditions when the solar illumination in normal incidence is equal to standard reference radiation, 1000W/m2, in $/Wpeak. Note that this is more important than the solely the efficiency. Correct way of comparing the prices of various solar options – for any technology. Is there a peak watt notion for wind?

Слайд 79
Описание слайда:
How to compare PV cells, modules? Peak power price - $/Wp. Lifetime – years before substantial degradation, e.g. 15% Efficiency, %

Слайд 80
Описание слайда:
PV module cost per peak watt

Слайд 81
Описание слайда:
PV module cost per peak watt – logarithmic

Слайд 82
Описание слайда:

Слайд 83
Описание слайда:

Слайд 84
Описание слайда:

Слайд 85
Описание слайда:

Слайд 86
Описание слайда:

Слайд 87
Описание слайда:
2004 world status of PV industry.

Слайд 88
Описание слайда:

Слайд 89
Описание слайда:

Слайд 90
Описание слайда:
Types of Solar Converters Photoelectrochemical cells – now up to eff of 10% in experiments. Polymer solar cells = 4-5% nanocrystal Si (nc-Si) solar cells, quantum dot technology

Слайд 91
Описание слайда:
PV manufacturing from Ore to Cells. Silicon resource, abundant, but… … stringent requirements to the ore Metallurgic silicon Silane gas Poly-Silicon Czochralsky (CZ) method Other methods New alternate methods

Слайд 92
Описание слайда:
Realizations Fixed tilted flat panel Concentration PV (Tracking systems) Integrated PV

Слайд 93
Описание слайда:
PV systems

Слайд 94
Описание слайда:

Слайд 95
Описание слайда:
PV standalone solar system

Слайд 96
Описание слайда:
PV grid connected solar system

Слайд 97
Описание слайда:
PV grid connected solar system

Слайд 98
Описание слайда:
AUA SPVS general information Each panel has approximately 0.7 square meters surface and 70 watts of peak power The 72 solar photovoltaic panels are installed on a special earthquake resistant structure Total battery bank storage is 1150 amper hours at 48 volts. Equiv. of 57.5 kWh Output is 3-phase 400 volt through 3 x 230 V, 10 kVA

Слайд 99
Описание слайда:
PV Arrays

Слайд 100
Описание слайда:
PV Arrays

Слайд 101
Описание слайда:
Current Rooftop Setup

Слайд 102
Описание слайда:
AUA Solar Rooftop Strategy

Слайд 103
Описание слайда:
Support Structure

Слайд 104
Описание слайда:

Слайд 105
Описание слайда:

Слайд 106
Описание слайда:

Слайд 107
Описание слайда:

Слайд 108
Описание слайда:
AUA SPVS general information Project Participants: SEUA Heliotechnics Lab team Viasphere Technopark Transistor Plus team AUA team with Dr. Melkumyan’s group

Слайд 109
Описание слайда:
Components of the PV System Photovoltaic (PV) panels Battery Bank Charge controllers Invertors Load

Слайд 110
Описание слайда:
PV Cells Manufactured by Krasnoye Znamye, Russia 125 x 125 mm rounded square Capacity of each cell – 2.2 Watt Price of each cell – $4.62 Price per peak Watt – $2.1 Number of cells – 2800 Efficiency – 15% (actually almost 16%)

Слайд 111
Описание слайда:
PV Cells

Слайд 112
Описание слайда:
PV Panels manufactured in Armenia PV panels are manufactured by Heliotechnics Laboratory of the SEUA Used is a Windbaron Laminator Glass bought in the USA – by a price of small lot EVA and Tedlar bough by a discount Frame manufactured in Armenia

Слайд 113
Описание слайда:
PV Panels manufactured in Armenia

Слайд 114
Описание слайда:
Battery Bank The voltage used is DC 48 Volts We use eight Rolls Solar Deep Cycle batteries, connected in series Each - 6 volt, of 1150 amper-hour capacity Total battery bank storage is 1150 amper hours at 48 volts. Equiv. of 57.5 kWh storage

Слайд 115
Описание слайда:
Charge Controllers The PV array is devided into 3 sub-arrays: - Right - Center - Left Charge controllers use three steps of connection: 1, 2, or 3 subarrays Charge controllers are Xantrax, 40 amps, 120 amps total

Слайд 116
Описание слайда:
Inverters – made in Armenia Designed and Manufactured by Transistor Plus of the Viasphere Technopark who has a long history of power supply/inverter design and manufacture Output is 3-phase 400 volt through 3 x 230 V, 10 kVA, - 3 sine-wave inverters

Слайд 117
Описание слайда:
Inverter Performance

Слайд 118
Описание слайда:
Load Currently the load is the DESODEC (Solar HVAC) equipment With two controllable powerful duct fans, drives, pumps, valves, controlls, sensors, etc. A circuitry automatically switches the load to the electric grid when the battery bank is exhausted

Слайд 119
Описание слайда:
Performance and benefits of the system Efficiencies of the different components: - PV panels: > 12% - cables: 90% - batteries 60% - 90% - Inverters 90% Dependency on weather Dependency on load

Слайд 120
Описание слайда:
PV System calculation approach See the handout “PV System calculation approach”

Слайд 121
Описание слайда:
Homework List the main components of the solar PV system. Which components can be omitted in urban areas? Imagine your PV system costs $2400 per installed kW. Calculate the cost of 1 kWh in Yerevan if the system lifecycle is 50 years. Remember AUA solar monitoring data. In which cases a solar PV system is feasible or more economical in contrast to electric power supplied from the grid? Explain.


Скачать презентацию на тему Lecture # 11 PV1. Solar Photovoltaics, AUA Solar System можно ниже:

Похожие презентации