Radiation analysis for space GRAS презентация

Содержание


Презентации» Астрономия» Radiation analysis for space GRAS
Geant4  Radiation Analysis for Space   GRAS  
Outline
 Motivation
 Description of the tool structure and functionalities
 GRAS asSimulations of the  Space Radiation EnvironmentCommonly used Ready to Use  Simulation ToolsThe example of MULASSIS
 Geant4-based tool
 Geant4 is a “Toolkit”
 Flexible,GRAS Geant4 Radiation Analysis for Space
 Analysis types
 3D
 Dose, Fluence,GRAS componentsGRAS components
 G4 General Particle SourceGRAS componentsGRAS componentsGRAS Analysis modules: Component degradation, Background
 Total Ionizing Dose
 Also perGRAS Analysis modules:  Human Exploration Initiatives
 Dose equivalent
 ICRP-60 andGRAS Analysis modules:  SEE in microelectronics
 Path length analysis
 EventGRAS Analysis modules:  Flexibility
 Volume
 To identify a volume inGRAS  Building blocks
 1. Geometry
 2. Primary generation
 3. Physics
MC analysis with no C++ coding
 Geometry via GDML
 Physics, Source,GRAS Analysis Modular, extendable designAnalysis Module
 Easy to implement:
 	Self contained analysis element
 Initialization, eventFor present Geant4 users GRAS and previous work
 2 ways ofEngineering tools: GRAS as flexible Monte Carlo engine
 Geometry exchange format
User Requirements
 Complete tool (Geometry, Physics, Source, Analysis)
 Available as standaloneGRAS is being used for
 Herschel
 Test beam detector study
 RadiationGRAS for HERSCHEL
 Herschel PACS Photoconductor instrument
 Study and test ofGRAS for JWST NIRSpec  Degradation
 Instrument design phase
 Radiation shielding,GRAS for JWST NIRSpec Background
 Secondary particle production
 Shielding effect onStatus          Conclusions
 Modular, script driven analysis package
 Space users oriented, but trying



Слайды и текст этой презентации
Слайд 1
Описание слайда:
Geant4 Radiation Analysis for Space GRAS G.Santin1, V.Ivanchenko2, R.Lindberg1, H.Evans1, P. Nieminen1, E.Daly1 1 Space Environments and Effects Analysis Section, ESA/ESTEC 2 PH SFT, CERN Geant4 Space Users Workshop Leuven, 5 Oct 2005


Слайд 2
Описание слайда:
Outline Motivation Description of the tool structure and functionalities GRAS as framework for Monte Carlo analyses Monte Carlo engine for external packages (e.g. SPENVIS) Present status, expectations, conclusions

Слайд 3
Описание слайда:
Simulations of the Space Radiation Environment

Слайд 4
Описание слайда:
Commonly used Ready to Use Simulation Tools

Слайд 5
Описание слайда:
The example of MULASSIS Geant4-based tool Geant4 is a “Toolkit” Flexible, powerful, extendable,… But intentionally “not a tool” ready for use MULASSIS Features 1D Layered geometry via scripting Geant4-based Predefined physics lists Materials by chemical formula Interfaced to the Space Environment spectra inside the Web-based SPENVIS framework User success Raised the level of radiation shielding analysis in the space community Limitations 1D geometry Extensibility

Слайд 6
Описание слайда:
GRAS Geant4 Radiation Analysis for Space Analysis types 3D Dose, Fluence, NIEL, activation… for support to engineering and scientific design Dose Equivalent, Equivalent Dose,… for ESA exploration initiative SEE: PHS, LET, SEU models Analysis independent from geometry input format GDML, CAD, or existing C++ class, … Pluggable physics lists Different analyses without re-compilation Modular / extendable design Publicly accessible

Слайд 7
Описание слайда:
GRAS components

Слайд 8
Описание слайда:
GRAS components G4 General Particle Source

Слайд 9
Описание слайда:
GRAS components

Слайд 10
Описание слайда:
GRAS components

Слайд 11
Описание слайда:
GRAS Analysis modules: Component degradation, Background Total Ionizing Dose Also per incoming particle type, with user choice of interface Gives event Pulse Height Spectrum For analysis of induced signal Units: MeV, rad, Gy

Слайд 12
Описание слайда:
GRAS Analysis modules: Human Exploration Initiatives Dose equivalent ICRP-60 and ICRP-92 LET-based coefficients Units: MeV, Sv, mSv, Gy, rad

Слайд 13
Описание слайда:
GRAS Analysis modules: SEE in microelectronics Path length analysis Event distribution of particle path length in a given set of volumes If used with “geantinos”, it provides the geometrical contribution to the energy deposition pattern change In a 3D model W.r.t. a 1D planar irradiation model

Слайд 14
Описание слайда:
GRAS Analysis modules: Flexibility Volume To identify a volume in the geometry tree At present implemented as the couple (name, copy No) Volume Interface To identify the boundary between two volumes Couple of Volumes

Слайд 15
Описание слайда:
GRAS Building blocks 1. Geometry 2. Primary generation 3. Physics 4. Modular analysis set via macros

Слайд 16
Описание слайда:
MC analysis with no C++ coding Geometry via GDML Physics, Source, Analysis via scripts Upgrades of models / interfaces

Слайд 17
Описание слайда:
GRAS Analysis Modular, extendable design

Слайд 18
Описание слайда:
Analysis Module Easy to implement: Self contained analysis element Initialization, event processing, normalization, printout  all inside Only one class to create/derive in case a new type of analysis is needed No need to modify Run+Event+Tracking+Stepping actions AIDA histogramming “per module” G4 UI commands “per module” Automatic module UI tree a la GATE /gras/analysis/dose/addModule doseCrystal /gras/analysis/dose/doseCrystal/setUnit MeV

Слайд 19
Описание слайда:
For present Geant4 users GRAS and previous work 2 ways of obtaining GRAS output without discarding hours/days/months of work Inserting C++ Geometry, Physics and/or Primary Generator classes inside GRAS In the main gras.cc Inserting GRAS into your existing applications Which way is the fastest depends on existing work

Слайд 20
Описание слайда:
Engineering tools: GRAS as flexible Monte Carlo engine Geometry exchange format - GDML - CAD / STEP - …

Слайд 21
Описание слайда:
User Requirements Complete tool (Geometry, Physics, Source, Analysis) Available as standalone executable No need to download and compile Geant4 Easy to integrate in existing applications Analysis types 3D Dose, Fluence, NIEL, activation… for support to engineering and scientific design Dose Equivalent, Equivalent Dose,… for ESA exploration initiative Transients: PHS, LET, SEU models Analysis independent from geometry input mode GDML, or existing C++ class, … Different analyses set without re-compilation Modular / extendable design Source and Physics description adequate to space applications Solar events Cosmic rays

Слайд 22
Описание слайда:
GRAS is being used for Herschel Test beam detector study Radiation effects to photoconductors and bolometers JWST Dose Background ConeXpress See talk by Ronnie Lindberg Electronic components Rad-hardness, local shielding, etc.

Слайд 23
Описание слайда:
GRAS for HERSCHEL Herschel PACS Photoconductor instrument Study and test of the detector to assess glitch rate Impact on science objectives Simulation of the proton irradiation at Leuven, Belgium Comparison with glitch data on-going Need precise description of energy degraders and beam parameters Extrapolation to detector behavior in space

Слайд 24
Описание слайда:
GRAS for JWST NIRSpec Degradation Instrument design phase Radiation shielding, material choice

Слайд 25
Описание слайда:
GRAS for JWST NIRSpec Background Secondary particle production Shielding effect on the particle flux on the detector Cosmic Ray background CRÈME’96 Solar Minimum Proton simulations

Слайд 26
Описание слайда:
Status Perspectives CVS repository online http://geant4.esa.int Code Latest stable tag works with Geant4 7.1 GDML 2.3 Documentation Introduction README file Installation INSTALL file Detailed User Manual In preparation

Слайд 27
Описание слайда:
Conclusions Modular, script driven analysis package Space users oriented, but trying to be generic Already used in the support of a number of space missions and ground beam tests GRAS as Ready-to-use Geant4 tool for common analysis types Framework for Monte Carlo analyses Monte Carlo engine for external packages GRAS used as framework for on-going ESA contracts REAT_MS (QinetiQ), Geant4 usability for space applications (CAD interface, SEE analysis, Physics lists for space applications) Open to comments / contributions for collaborative development http://geant4.esa.int We believe GRAS is significantly improving the Geant4 usability Some features could be used directly by the Geant4 kernel Related talk Ronnie Lindberg (ESA) with extensive validation and dosimetry / physics investigations


Скачать презентацию на тему Radiation analysis for space GRAS можно ниже:

Похожие презентации