Презентация, доклад Rotation of rigid bodies. Angular momentum and torque. Properties of fluids


Вы можете изучить и скачать доклад-презентацию на тему Rotation of rigid bodies. Angular momentum and torque. Properties of fluids. Презентация на заданную тему содержит 37 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!
Презентации» Физика» Rotation of rigid bodies. Angular momentum and torque. Properties of fluids
500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500500



Слайды и текст этой презентации
Слайд 1
Описание слайда:
Physics 1 Voronkov Vladimir Vasilyevich

Слайд 2
Описание слайда:
Lecture 4 Rotation of rigid bodies. Angular momentum and torque. Properties of fluids.


Слайд 3
Описание слайда:
Rotation of Rigid Bodies in General case When a rigid object is rotating about a fixed axis, every particle of the object rotates through the same angle in a given time interval and has the same angular speed and the same angular acceleration. So the rotational motion of the entire rigid object as well as individual particles in the object can be described by three angles. Using these three angles we can greatly simplify the analysis of rigid-object rotation.

Слайд 4
Описание слайда:
Radians Angle in radians equals the ratio of the arc length s and the radius r:

Слайд 5
Описание слайда:
Angular kinematics Angular displacement: Instantaneous angular speed: Instantaneous angular acceleration:

Слайд 6
Описание слайда:
Angular and linear quantities Every particle of the object moves in a circle whose center is the axis of rotation. Linear velocity: Tangential acceleration: Centripetal acceleration:

Слайд 7
Описание слайда:
Total linear acceleration Tangential acceleration is perpendicular to the centripetal one, so the magnitude of total linear acceleration is

Слайд 8
Описание слайда:
Angular velocity Angular velocity is a vector.

Слайд 9
Описание слайда:
Rotational Kinetic Energy

Слайд 10
Описание слайда:
Calculations of Moments of Inertia

Слайд 11
Описание слайда:
Uniform Thin Hoop

Слайд 12
Описание слайда:
Uniform Rigid Rod

Слайд 13
Описание слайда:
Uniform Solid Cylinder

Слайд 14
Описание слайда:
Moments of Inertia of Homogeneous Rigid Objects with Different Geometries

Слайд 15
Описание слайда:

Слайд 16
Описание слайда:
Parallel-axis theorem Suppose the moment of inertia about an axis through the center of mass of an object is ICM. Then the moment of inertia about any axis parallel to and a distance D away from this axis is

Слайд 17
Описание слайда:

Слайд 18
Описание слайда:
Torque When a force is exerted on a rigid object pivoted about an axis, the object tends to rotate about that axis. The tendency of a force to rotate an object about some axis is measured by a vector quantity called torque  (Greek tau).

Слайд 19
Описание слайда:
The force F has a greater rotating tendency about axis O as F increases and as the moment arm d increases. The component F sin tends to rotate the wrench about axis O.

Слайд 20
Описание слайда:
We use the convention that the sign of the torque resulting from a force is positive if the turning tendency of the force is counterclockwise and is negative if the turning tendency is clockwise. Then

Слайд 21
Описание слайда:
Torque is not Force Torque is not Work Torque should not be confused with force. Forces can cause a change in linear motion, as described by Newton’s second law. Forces can also cause a change in rotational motion, but the effectiveness of the forces in causing this change depends on both the forces and the moment arms of the forces, in the combination that we call torque. Torque has units of force times length: newton · meters in SI units, and should be reported in these units. Do not confuse torque and work, which have the same units but are very different concepts.

Слайд 22
Описание слайда:
Rotational Dynamics Let’s add which equals zero, as and are parallel. Then: So we get

Слайд 23
Описание слайда:
Rotational analogue of Newton’s second law Quantity L is an instantaneous angular momentum. The torque acting on a particle is equal to the time rate of change of the particle’s angular momentum.

Слайд 24
Описание слайда:
Net External Torque The net external torque acting on a system about some axis passing through an origin in an inertial frame equals the time rate of change of the total angular momentum of the system about that origin:

Слайд 25
Описание слайда:
Angular Momentum of a Rotating Rigid Object Angular momentum for each particle of an object: Angular momentum for the whole object: Thus:

Слайд 26
Описание слайда:
Angular acceleration

Слайд 27
Описание слайда:
The Law of Angular Momentum Conservation The total angular momentum of a system is constant if the resultant external torque acting on the system is zero, that is, if the system is isolated.

Слайд 28
Описание слайда:
Change in internal structure of a rotating body can result in change of its angular velocity.

Слайд 29
Описание слайда:
When a rotating skater pulls his hands towards his body he spins faster.

Слайд 30
Описание слайда:
Three Laws of Conservation for an Isolated System Full mechanical energy, linear momentum and angular momentum of an isolated system remain constant.

Слайд 31
Описание слайда:
Work-Kinetic Theory for Rotations Similarly to linear motion:

Слайд 32
Описание слайда:
The net work done by external forces in rotating a symmetric rigid object about a fixed axis equals the change in the object’s rotational energy.

Слайд 33
Описание слайда:
Equations for Rotational and Linear Motions

Слайд 34
Описание слайда:
Independent Study for IHW2 Vector multiplication (through their components i,j,k).Right-hand rule of Vector multiplication. Elasticity Demonstrate by example and discussion your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas for calculating Young’s modulus, shear modulus, and bulk modulus. Units of stress.

Слайд 35
Описание слайда:
Fluids Fluids Define absolute pressure, gauge pressure, and atmospheric pressure, and demonstrate by examples your understanding of the relationships between these terms. Pascal’s law. Archimedes’s law. Rate of flow of a fluid. Bernoulli’s equation. Torricelli’s theorem.

Слайд 36
Описание слайда:
Literature to Independent Study Lecture on Physics Summary by Umarov. (Intranet) Fishbane Physics for Scientists… (Intranet) Serway Physics for Scientists… (Intranet)

Слайд 37
Описание слайда:
Problems A solid sphere and a hollow sphere have the same mass and radius. Which momentum of rotational inertia is higher if it is? Prove your answer with formulae. What are the units for, are these quantities vectors or scalars: Angular momentum Angular kinetic energy Angular displacement Tangential acceleration Angular acceleration Torque


Скачать презентацию на тему Rotation of rigid bodies. Angular momentum and torque. Properties of fluids можно ниже:

Похожие презентации