Геохимия урана и тория в магматическом процессе презентация

Содержание


Презентации» Химия» Геохимия урана и тория в магматическом процессе
Среднее содержание уран и тория в основных типах магматических горных породАнализ этих данных свидетельствует о том, что интрузивные магматические горные породыНаиболее сложным является распределение урана и тория в гранитоидных породах, средиНаиболее резкая разница в радиоактивности отмечается между гранитами, богатыми кальцием –Магматические образования (интрузивные и эффузивные) с повышенной щелочностью характеризуются более высокойПороды жерловой и субвулканической фаций более обогащены ураном и торием, чемРаспространенные среди гранитоидов, кислых вулканитов или щелочных пород высокорадиоактивные разности могутСогласно Н.А. Титаевой (2000) концентрацию урана и тория в магматических породахСреднее содержание уран и тория в базальтах океана (по Н.А. Титаевой,2. Внутри одной и той же магматической формации концентрации радиоактивных элементовФормы нахождения радиоактивных элементов в магматических породах
 Все формы нахождения уранаПоминеральный баланс урана в позднепалеозойских гранитоидах Кузнецкого Алатау (по В.А. Домаренко,Условия миграции и концентрирования уран и тория при формировании интрузивно-магматических комплексовВ свежих вулканических породах, где происходит быстрая закалка расплава, можно наблюдать,В интрузивном процессе происходит интенсивная дифференциация как урана, так и тория.Магматических месторождений урана и тория не существует. Гранитные интрузии даже со



Слайды и текст этой презентации
Слайд 1
Описание слайда:


Слайд 2
Описание слайда:
Среднее содержание уран и тория в основных типах магматических горных пород (по Н.А. Григорьеву, 2002)

Слайд 3
Описание слайда:
Анализ этих данных свидетельствует о том, что интрузивные магматические горные породы в целом существенно более радиоактивны, чем вулканогенные. К тому же для них характерно более высокое торий-урановое отношение. Достаточно выдержанное различие в торий-урановом отношении интрузивных и эффузивных разностей магматических пород требует специального анализа. Эти различия выявились только в последнее время в результате новых оценок содержаний элементов на основе современных аналитических данных. В более ранних сводках таких различий установлено не было. Анализ этих данных свидетельствует о том, что интрузивные магматические горные породы в целом существенно более радиоактивны, чем вулканогенные. К тому же для них характерно более высокое торий-урановое отношение. Достаточно выдержанное различие в торий-урановом отношении интрузивных и эффузивных разностей магматических пород требует специального анализа. Эти различия выявились только в последнее время в результате новых оценок содержаний элементов на основе современных аналитических данных. В более ранних сводках таких различий установлено не было.

Слайд 4
Описание слайда:

Слайд 5
Описание слайда:
Наиболее сложным является распределение урана и тория в гранитоидных породах, среди которых Л. В. Комлевым еще в 50-х годах 20 века было выделено несколько радиогеохимических типов: Наиболее сложным является распределение урана и тория в гранитоидных породах, среди которых Л. В. Комлевым еще в 50-х годах 20 века было выделено несколько радиогеохимических типов: нормальнорадиоактивные граниты с близким к кларку содержанием урана и тория и средним торий-урановым отношением (2,5—4,5); повышеннорадиоактивные граниты при пониженном содержании урана (Th/U > 6–10). Подобного рода граниты часто приурочены к метаморфическим выступам, сложенным породами карбонатного состава; высокорадиоактивные лейкократовые граниты редкометалльного типа с повышенным содержанием урана, тория, бериллия, молибдена, вольфрама. Торий-урановое отношение в них изменяется в широких пределах. Наиболее распространены лейкократовые граниты с повышенным торий-урановым отношением (5-10); высокорадиоактивные существенно ториеносные аляскитовые граниты (Th/U > 10); слаборадиоактивные граниты (гранодиориты, плагиограниты), богатые кальцием и натрием и бедные ураном и торием (Th/U < 2–3). В настоящее время среди слаборадиоактивных плагиогранитов установлены разности с повышенным торий-урановым отношением (>5) – гранодиориты и плагиограниты; высокорадиоактивные лейкократовые граниты эвгеосинклинальных (?) зон с пониженным торий-урановым отношением (1–2).

Слайд 6
Описание слайда:
Наиболее резкая разница в радиоактивности отмечается между гранитами, богатыми кальцием – плагиогранитами (от (1,5–3,1)×10-4% до (5–15)×10-4%), и гранитами, бедными кальцием с высоким содержанием калия (от (4–10)× 10-4% до (20–50)× 10-4%). Наиболее резкая разница в радиоактивности отмечается между гранитами, богатыми кальцием – плагиогранитами (от (1,5–3,1)×10-4% до (5–15)×10-4%), и гранитами, бедными кальцием с высоким содержанием калия (от (4–10)× 10-4% до (20–50)× 10-4%). Установлено, что в процессе дифференциации магматических очагов гранитоидного состава уран накапливается в поздних дифференциатах. Этот факт согласуется с общей направленностью процесса накопления урана и тория от более основных разностей гранитов к более кислым и щелочным.

Слайд 7
Описание слайда:
Магматические образования (интрузивные и эффузивные) с повышенной щелочностью характеризуются более высокой радиоактивностью по сравнению с близкими по кислотности породами известково-щелочной серии, что отмечается как в ультраосновных щелочных породах (меймечитах, мельтейгитах и др.), так и в кислых (трахитах, трахилипаритах и др.). В щелочных породах нет прямой корреляционной зависимости между содержанием урана и тория, с одной стороны, и калия — с другой. Из петрогенных компонентов наиболее отчетливо проявляется связь радиоактивности с коэффициентом агпаитности Магматические образования (интрузивные и эффузивные) с повышенной щелочностью характеризуются более высокой радиоактивностью по сравнению с близкими по кислотности породами известково-щелочной серии, что отмечается как в ультраосновных щелочных породах (меймечитах, мельтейгитах и др.), так и в кислых (трахитах, трахилипаритах и др.). В щелочных породах нет прямой корреляционной зависимости между содержанием урана и тория, с одной стороны, и калия — с другой. Из петрогенных компонентов наиболее отчетливо проявляется связь радиоактивности с коэффициентом агпаитности (K2O + Na2O) / Al2O3)

Слайд 8
Описание слайда:
Породы жерловой и субвулканической фаций более обогащены ураном и торием, чем образования покровных фаций. При прочих равных условиях в породах, обогащенных порфировыми выделениями, содержание урана и тория выше. Породы жерловой и субвулканической фаций более обогащены ураном и торием, чем образования покровных фаций. При прочих равных условиях в породах, обогащенных порфировыми выделениями, содержание урана и тория выше. Среди магматических комплексов намечается несколько типов с содержанием урана выше критического уровня (>(4,5—5)×10-4%), для которого сохраняется прямая пропорциональная зависимость содержания элемента от содержания петрогенных компонентов (SiО2, K2О и т. д.). Для таких пород характерно, как правило, высокое содержание легкоизвлекаемого урана, наличие свободных форм элементов, не включенных в кристаллические структуры породообразующих и акцессорных минералов.

Слайд 9
Описание слайда:

Слайд 10
Описание слайда:
Распространенные среди гранитоидов, кислых вулканитов или щелочных пород высокорадиоактивные разности могут иметь различную природу. Чаще всего аномальная радиоактивность обусловлена наложенными на магматические тела гидротермально-метасоматическими изменениями и имеет вторичное происхождение. Распространенные среди гранитоидов, кислых вулканитов или щелочных пород высокорадиоактивные разности могут иметь различную природу. Чаще всего аномальная радиоактивность обусловлена наложенными на магматические тела гидротермально-метасоматическими изменениями и имеет вторичное происхождение. Но распространены и высокорадиоактивные магматические породы с сингенетичными концентрациями урана и тория. В последние десятилетия появилось значительное количество работ, в которых делаются попытки объяснить существование близких по составу магматических пород, отличающихся по параметрам накопления урана и тория. При этом все чаще обращается внимание на неоднородность состава мантии. Обогащённость отдельных участков мантии несовместимыми (некогерентными) элементами, в том числе ураном и торием, объясняется проявлением метасоматических процессов в мантии.

Слайд 11
Описание слайда:
Согласно Н.А. Титаевой (2000) концентрацию урана и тория в магматических породах определяет три важнейших фактора: Согласно Н.А. Титаевой (2000) концентрацию урана и тория в магматических породах определяет три важнейших фактора: 1) формационная принадлежность к тому или иному глобальному резервуару; 2) принадлежность к той или иной серии щелочности; 3) принадлежность к определенному петрохимическому типу пород в зависимости от содержания SiО2. Одинаковые по составу магматические породы (например, базальты) могут более чем на порядок различаться по содержанию U и Th в зависимости от того, к какому резервуару – обогащенному или обедненному — принадлежит их источник магматизма.

Слайд 12
Описание слайда:
Среднее содержание уран и тория в базальтах океана (по Н.А. Титаевой, 2000)

Слайд 13
Описание слайда:
2. Внутри одной и той же магматической формации концентрации радиоактивных элементов будут определяться вхождением конкретной породы в ту или иную серию по щелочности, последовательно возрастая от толеитовой через известково-щелочную к щелочной серии. Этот вывод основан на том, что установлена положительная корреляция между U, Th и К во многих эндогенных процессах. Возрастание щелочности, возможно обусловленное влиянием щелочных флюидов, ведет и к возрастанию концентраций радиоактивных элементов. При этом связь между Th и К более жесткая, чем между U и К, поэтому возрастание концентраций сопровождается и возрастанием отношения Th/U. 2. Внутри одной и той же магматической формации концентрации радиоактивных элементов будут определяться вхождением конкретной породы в ту или иную серию по щелочности, последовательно возрастая от толеитовой через известково-щелочную к щелочной серии. Этот вывод основан на том, что установлена положительная корреляция между U, Th и К во многих эндогенных процессах. Возрастание щелочности, возможно обусловленное влиянием щелочных флюидов, ведет и к возрастанию концентраций радиоактивных элементов. При этом связь между Th и К более жесткая, чем между U и К, поэтому возрастание концентраций сопровождается и возрастанием отношения Th/U. 3. Внутри каждой серии пород (толеитовой, известково-щелочной, щелочной) в процессе фракционной кристаллизации наблюдается закономерное возрастание содержаний U и Th пропорционально увеличению содержания SiО2.

Слайд 14
Описание слайда:
Формы нахождения радиоактивных элементов в магматических породах Все формы нахождения урана и тория в магматических породах можно объединить в три группы: 1) собственные минералы; 2) изоморфное вхождение в акцессорные минералы; 3) рассеянные формы. Соотношения между отдельными формами зависят от состава пород и условий их кристаллизации. В ультраосновных, основных и средних породах известково-щелочной и толеитовой серий преобладает рассеянная форма урана и тория. В основных и средних интрузивных породах радиоактивные элементы рассеяны в решетках породообразующих минералов. При быстром охлаждении расплава в процессе образования вулканических пород уран и торий, находившиеся в остаточном расплаве, сосредоточиваются в стекле в форме твердого раствора. Вкрапленники содержат в 100–1000 раз меньше урана и тория.

Слайд 15
Описание слайда:

Слайд 16
Описание слайда:

Слайд 17
Описание слайда:
Поминеральный баланс урана в позднепалеозойских гранитоидах Кузнецкого Алатау (по В.А. Домаренко, 1979)

Слайд 18
Описание слайда:
Условия миграции и концентрирования уран и тория при формировании интрузивно-магматических комплексов и вулканогенных серий Поведение элемента в процессе магматической кристаллизации зависит от его концентрации в магме, структуры кристаллов, в которые он может войти, и его собственных кристаллохимических свойств. Концентрация урана и тория в магматических расплавах, за исключением некоторых гранитных, достаточно низкая (10-4%), что не позволяет им образовывать собственные минералы. Следовательно, в процессе магматической кристаллизации уран и торий должны входить в той или иной степени в минералы других химических элементов. В восстановительных условиях магматических камер уран находится в степени окисления 4+ и является химическим аналогом Th4+. Высокий заряд U4+ и Th4+ и сравнительно большой ионный радиус не соответствуют ни одному из петрогенных элементов и не позволяют им изоморфно входить в решетки породообразующих минералов. Медленный процесс кристаллизации приводит к дистилляции ранних минеральных фаз от примесей и оттеснению урана и тория в остаточный расплав.

Слайд 19
Описание слайда:
В свежих вулканических породах, где происходит быстрая закалка расплава, можно наблюдать, что практически все радиоактивные элементы сосредоточены в стекле В свежих вулканических породах, где происходит быстрая закалка расплава, можно наблюдать, что практически все радиоактивные элементы сосредоточены в стекле

Слайд 20
Описание слайда:
В интрузивном процессе происходит интенсивная дифференциация как урана, так и тория. Остаточные части расплава способны обогащаться радиоактивными элементами в сотни и тысячи раз. В интрузивном процессе происходит интенсивная дифференциация как урана, так и тория. Остаточные части расплава способны обогащаться радиоактивными элементами в сотни и тысячи раз. В природных расплавах с кларковой концентрацией U и Th основная их часть захватывается акцессорными минералами. В полнокристаллических интрузивных породах с ними обычно связано не менее 50% урана и еще большая часть тория. Возможно, этим механизмом, приводящим к выносу некоторого количества более подвижного урана с гидротермальными флюидами за пределы интрузии и объясняется более высокое торий-урановое отношение, характерное для интрузивных пород по сравнению с вулканогенными О том, что на позднемагматической стадии становления интрузий уран приобретает способность покинуть магматическую камеру, свидетельствуют многие данные. В этот период возрастает парциальное давление кислорода, что способствует окислению урана и увеличению его подвижности. Вследствие выноса урана будет возрастать отношение Th/U. Однако если для конкретного расплава характерна повышенная концентрация близких к U (IV) по кристаллохимическим свойствам элементов (лантаноиды, Y, Th, Zr), достаточная для образования их собственных минералов, то уран прочно связывается в них в виде изоморфной примеси. Лишь в том случае, когда концентрация указанных элементов невелика, основная часть урана будет находиться в рассеянном состоянии и сравнительно легко извлекаться выделяющимися флюидами

Слайд 21
Описание слайда:
Магматических месторождений урана и тория не существует. Гранитные интрузии даже со сравнительно высокими содержаниями радиоактивных элементов экономической ценности в настоящее время не представляют. В последнее время на территории Монголии установлены уникальные гранитоидные интрузии со специфической редкометалльной минерализацией. Предполагается, что редкометалльные граниты с армстронгитом и эльпидитом, отличающиеся высокими концентрациями урана и тория имеют первично магматическую природу (Коваленко, 1985, 1995 и др.). Магматических месторождений урана и тория не существует. Гранитные интрузии даже со сравнительно высокими содержаниями радиоактивных элементов экономической ценности в настоящее время не представляют. В последнее время на территории Монголии установлены уникальные гранитоидные интрузии со специфической редкометалльной минерализацией. Предполагается, что редкометалльные граниты с армстронгитом и эльпидитом, отличающиеся высокими концентрациями урана и тория имеют первично магматическую природу (Коваленко, 1985, 1995 и др.).


Скачать презентацию на тему Геохимия урана и тория в магматическом процессе можно ниже:

Похожие презентации