Свойства радиоактивных элементов презентация

Содержание


Презентации» Химия» Свойства радиоактивных элементов
Свойства радиоактивных элементовТорий
 Торий (Th) радиоактивный химический элемент, открыт в 1828 году И.Я.Торий
 По химическим свойствам он близок к РЗЭ, особенно к Се.Торий
 В химии известны различные состояния окисления Th; наиболее устойчив Th4+:Уран
 Открыт в 1789 году, но в чистом виде (металл серо-стальногоКислотно-щелочные свойстваУран
 Химически U весьма активен, имеет переменную валентность - 3+, 4+,Потенциал восстановленияУран (IV) в своих соединениях присутствует в форме иона U4+. ПоИонные радиусыУран (VI) — наиболее устойчивая степень окисления урана при свободном доступеУранил-ионСоединения U(VI) сравнительно хорошо растворимы и устойчивы в водных растворах. НаиболееНаиболее важное значение в природных условиях имеют карбонатные, сульфатные, фторидные, фосфатныеИоны U6+ наиболее устойчивы в условиях окислительной обстановки и отличаются отХарактерна тенденция U6+ к образованию комплексов с карбонатными, сульфатными, фторидными, фосфатнымиРадий (Ra)
 Известны 4 природных изотопа радия: 223Ra (T1/2=11,2 дня), 224RaРадон (Rn)
 В природе известно 3 изотопа радона: 222Rn (радон, T1/2=3,8Изотопы радона растворимы в воде и других жидкостях. Коэффициент растворимости вПолоний (Po)
 В природе известен ряд изотопов полония: 210Po (T1/2=138 дней),В природные растворы Ро поступает в ультрамикроконцентрациях. Он склонен к образованиюПротактиний (Pa)
 Атом Pa (5f56d17s2) состоит только из радиоактивных изотопов. ВПротактиний (Pa)
 Катионы протактиния легко образуют комплексные соединения, однако большинство изГелий (He)
 Гелий – нерадиоактивный элемент. После водорода гелий – самыйРяды распада
 В отличие от долгоживущих природных радионуклидов 238U, 235U иРяды распадаРяды распадаАльфа-распад заключается в способности ядер превращаться в другие более легкие ядраВ каждом из природных рядов встречается определенная последовательность превращений, когда заРадиоактивное равновесие в рядах распада
 Члены каждого ряда связаны друг сЭто соотношение определяет так называемое «вековое» равновесие (Баранов, 1956). Скорость установленияВ зависимости от соотношения периодов полураспада материнского ТМ и дочернего TДРадиоактивное равновесие в данном ряду распада считается нарушенным, если соотношение междуСуществуют три основные группы факторов, приводящие к нарушению радиоактивного равновесия вРассмотрим некоторые примеры (Титаева, 2000).
 Рассмотрим некоторые примеры (Титаева, 2000).
 1)	ПриВ практике геологоразведочных работ особое значение имеет радиоактивное равновесие между ураном



Слайды и текст этой презентации
Слайд 1
Описание слайда:
Свойства радиоактивных элементов


Слайд 2
Описание слайда:

Слайд 3
Описание слайда:
Торий Торий (Th) радиоактивный химический элемент, открыт в 1828 году И.Я. Берцелиусом. Назван в честь скандинавского бога грома Тора. Атомный номер 90, атомная масса 232,039. Атом тория представлен радиоактивными природными изотопами: 232Th (~ 100 %, (Т1/2 - 1,4·1010 лет); 228Th (радиоторий X и UX1', Т1/2 - 1,9 лет); 230Th (ионий Io, Т1/2 - 8·104 лет), 234Th (уран X1 - UX, T1/2 - 24,1 дня); 227Th (радиоактивный X - UX; Т1/2 - 18,7 дня); 231Th (уран Y - UY, Т1/2 - 25,5 ч). Известно несколько искусствен­ных короткоживущих (секунды, минуты) изотопов Th. 232Th является вторым по распространенности природным радиоактивным изотопом в земной коре (1,2*10-3 %), уступает только 87Rb (4,16*10-3 %, Т1/2 - 4,9·1010 лет). Торий (5f6d27s2) радиоактивный fd -металл из группы Ас, в периодической системе расположен в 7-м периоде в III группе вместе с Ti, Zr, Hf и лантаноидами. При совместном рассмотрении с лантаноидами является гомологом Се, по диагонали соседствует с La, Gd, Lu, по горизонтали - с Ac, Ra, и Pa, U. Ко всем этим металлам он более или менее близок по химическим свойствам. По термическим свойствам ближе всего к Y и Lu, по энергии образования изолированных атомов - к Zr, Hf, U. Сочетание высокой температуры плавления - Th (металл) 1800°С и ThO2 3222°С, близкой к таковой Ti, и большой химической активности (близкой к активности Mg) отличает Th от U и большинства других металлов.

Слайд 4
Описание слайда:
Торий По химическим свойствам он близок к РЗЭ, особенно к Се. Оба проявляют наиболее устойчивую в природе валентность (Th4+, Ce4+), но по сравнению с Се торий образует более устойчивые комплексные соединения. Th окисляется на воздухе при температуре 20°C, реагирует с Н2O с образованием защитной пленки ThO2; при низких температурах взаимодействует с F (ThF4), при нагревании (до ~ 45°С) - с CI, Br, I, S, при 600°С - с Н2 (ThH2), при 800°С образует нитриды, фосфиды, карбиды, силициды, а также интерметаллы и сплавы, пока не установленные а природе. Многие соли Th (галогениды, кроме F), сульфаты растворимы в Н2O и разбавленных кислотах. При 20°С хорошо растворим Th(NO3)4 - 190,7 г/100 г, практически не растворим ThF4 - 0,2 г/100 г, a ThCl4 реагирует с Н2O; не растворимы фосфаты, хроматы, молибдаты, оксикарбонат, оксалат, сульфит. Характерно образование многочисленных комплексных соединений Th4+, в том числе растворимых (карбонатные и другие комплексы).

Слайд 5
Описание слайда:
Торий В химии известны различные состояния окисления Th; наиболее устойчив Th4+: ([Rn])ThO2, [Th(H2O)]4+(aq), ThF4, ThCl4) и т.д., ThF73-, соли Th4+, комплексы. Гораздо менее устойчивы Th3+ (ThI3), и Th2+ (ThO, ThH2). Стандартный потенциал восстановления Е° (В): Th4+ → Th°= - 1,83 (кислый раствор); ThO2 → Th° = - 2,56 (щелочной раствор) и окисления Тh(тв.) → Th(OH)4 (тв.) = - 2,48. Гидроксид (произведение растворимости 10-39 - 10-42) Th(OH)4 начинает осаждаться из растворов при рН > 3,5; в присутствии карбонатов щелочных металлов и солей органических кислот образует растворимые комплексы (Титаева, 1991). При рН > 3,5 микроконцентрации тория образуют в растворе коллоидный Th(OH)4. Процесс гидролиза Th4+ носит сложный характер, предполагает наличие, кроме Th(OH)4, и других форм Th(OH)3+, Th2(OH)26- и др. В порошке торий пироморфен, температура воспламенения 270°С, нижний предел взрываемости 75 г/м3.

Слайд 6
Описание слайда:
Уран Открыт в 1789 году, но в чистом виде (металл серо-стального цвета) выделен только в 1841 году. Уран является самым тяжелым из относительно распространенных на Земле элементов. Представлен тремя радиоактивными природными изотопами 238U (99,275%), 235U (0,720%) и 234U (0,005%). Уран (5f36d17s2) является fd-металлом и принадлежит к 3-й группе периодической системы, подгруппе актиноидов: по группе наиболее близок к W, Мо, в какой-то мере к Но, Nd, а по периоду - к Th. Металлический U, как и Th, взаимодействует с O2 с образованием защитной пленки оксидов, неравновесных при комнатных температурах (t) и давлении (P). Соединения UO часто содержат N и С, a UO2 и UO2+x окисляются при повышенных температурах и давлении до более высоких оксидов вплоть до UО3. Из многочисленных кислородных соединений наиболее устойчивыми считаются UO2 (тип флюорита U16O36+m) и типа уранила [UO2]2+ или U5nО13n+3, которые относятся к двум разным гомологическим рядам оксидов U. Металлический U имеет сильную восстановительную способность, в порошке пироморфен, сильный комплексообразователь, образует фториды, нитриды, гидриды, сульфиды, а также сплавы с металлами. Характерная особенность химии U - высокая летучесть его карбидов, галоидов, уранилов и др. У всех соединений U преобладают основные свойства. Металлический U реагирует с Н2O при t > 100°С, UH3, UC2 и UC реагируют с холодной и горячей Н2O.

Слайд 7
Описание слайда:
Кислотно-щелочные свойства

Слайд 8
Описание слайда:
Уран Химически U весьма активен, имеет переменную валентность - 3+, 4+, 5+, 6+; особенно устойчивое состояние в геохимии и минералогии имеют U6+ и U4+, которые ведут себя как разные элементы. В природе уран существует в двух степенях окисления: +4 и +6. В лабораторных условиях получены слабоустойчивые U (III) и U (V). U4+ в природе по свойствам наиболее близок к Th4+, лантаноидам: TR4+ (Сe4+, Pr, Tb), TR3+ (Nd, Ho), и к элементам иттриевой группы. U отличается от всех элементов очень крупным размером комплексного катиона (UO2)2+, способным образовывать собственные урановые минералы. В этом отношении катион U6+ сходен с анионами W6+ (WO42-) и особенно с Мо6+ (МoO42-) устойчивостью анионных комплексов. Менее устойчивы другие состояния окисления U. Стандартные потенциалы восстановления Е° (В)

Слайд 9
Описание слайда:
Потенциал восстановления

Слайд 10
Описание слайда:
Уран (IV) в своих соединениях присутствует в форме иона U4+. По химическим свойствам он близок к Th (IV), Y (III) и тяжелым лантаноидам иттриевой группы. С химической точки зрения ион U4+ является слабым основанием. Он существует лишь в сильнокислых растворах и при понижении кислотности гидролизуется с образованием U(OH)4. Гидроксид U(OH)4 слабо растворим в воде, но хорошо растворяется в кислотах. Диоксид урана UO2 практически не реагирует с водой до 300°С, нерастворим в НС1, но хорошо растворяется в HNO3 и смесях кислот. Из соединений U (IV) наиболее растворимы в воде UC14 и U(SO4)2. Вследствие этого U (IV) устойчив в сильнокислых сульфатных, хлоридных и нитратных растворах. Силикаты U (IV) растворимы в сильнокислых средах. U (IV) склонен к образованию комплексных соединений, где имеет координационное число 8. Известны карбонатные, сульфатные, оксалатные и другие комплексы U4+. Большинство из них малоустойчиво, причем устойчивость падает с повышением температуры. Например, в карбонатных растворах U (IV) образует устойчивый в избытке карбоната комплекс U(CO3)56- Уран (IV) в своих соединениях присутствует в форме иона U4+. По химическим свойствам он близок к Th (IV), Y (III) и тяжелым лантаноидам иттриевой группы. С химической точки зрения ион U4+ является слабым основанием. Он существует лишь в сильнокислых растворах и при понижении кислотности гидролизуется с образованием U(OH)4. Гидроксид U(OH)4 слабо растворим в воде, но хорошо растворяется в кислотах. Диоксид урана UO2 практически не реагирует с водой до 300°С, нерастворим в НС1, но хорошо растворяется в HNO3 и смесях кислот. Из соединений U (IV) наиболее растворимы в воде UC14 и U(SO4)2. Вследствие этого U (IV) устойчив в сильнокислых сульфатных, хлоридных и нитратных растворах. Силикаты U (IV) растворимы в сильнокислых средах. U (IV) склонен к образованию комплексных соединений, где имеет координационное число 8. Известны карбонатные, сульфатные, оксалатные и другие комплексы U4+. Большинство из них малоустойчиво, причем устойчивость падает с повышением температуры. Например, в карбонатных растворах U (IV) образует устойчивый в избытке карбоната комплекс U(CO3)56- Отличительной особенностью, отличающей геохимию U4+ от лантаноидов, Ti2+ и других элементов-гидролизатов является высокая среди катионов степень подвижности в водных растворах.

Слайд 11
Описание слайда:
Ионные радиусы

Слайд 12
Описание слайда:
Уран (VI) — наиболее устойчивая степень окисления урана при свободном доступе воздуха. Валентность 6 является высокой даже для такого крупного катиона, как U6+. Он энергетически неустойчив и в водных растворах мгновенно гидролизуется с образованием комплексного двухвалентного катиона уранила UO2+. Например, UF6 + 2Н2O → UO2F2 + 4HF. Уран (VI) — наиболее устойчивая степень окисления урана при свободном доступе воздуха. Валентность 6 является высокой даже для такого крупного катиона, как U6+. Он энергетически неустойчив и в водных растворах мгновенно гидролизуется с образованием комплексного двухвалентного катиона уранила UO2+. Например, UF6 + 2Н2O → UO2F2 + 4HF.

Слайд 13
Описание слайда:
Уранил-ион

Слайд 14
Описание слайда:
Соединения U(VI) сравнительно хорошо растворимы и устойчивы в водных растворах. Наиболее растворимы уранил-нитраты. Хорошо растворимы сульфаты уранила и оксигалогениды (UO2C12 и UO2F2). UF6 и UC16 летучи, но в присутствии паров воды легко гидролизуются, переходя в оксигалогениды. Растворимы многие соли уранила с органическими кислотами. Типичными труднорастворимыми соединениями U (VI) являются фосфаты, арсенаты, ванадаты. Соединения U(VI) сравнительно хорошо растворимы и устойчивы в водных растворах. Наиболее растворимы уранил-нитраты. Хорошо растворимы сульфаты уранила и оксигалогениды (UO2C12 и UO2F2). UF6 и UC16 летучи, но в присутствии паров воды легко гидролизуются, переходя в оксигалогениды. Растворимы многие соли уранила с органическими кислотами. Типичными труднорастворимыми соединениями U (VI) являются фосфаты, арсенаты, ванадаты. U (VI) проявляет большую склонность к образованию комплексных соединений, которые играют важную роль в его геохимии. Во всех этих соединениях уран находится в форме уранил-иона, который имеет координационные числа 4 и 6. Комплексообразование U (VI) с Сl-, Вr- и NO3- идет слабо.

Слайд 15
Описание слайда:
Наиболее важное значение в природных условиях имеют карбонатные, сульфатные, фторидные, фосфатные и гидроксильные комплексы. Наиболее важное значение в природных условиях имеют карбонатные, сульфатные, фторидные, фосфатные и гидроксильные комплексы. Аквагидроксокомплексы уранила образуются при ступенчатом замещении аквагрупп в акваионе уранила [UO2(H2O)6]2+ и имеют форму [UO2(OH)n(H2O)6-n]2-n (n - от 0 до 6) (Наумов, 1978). Карбонатные комплексы образуют семейство соединений, среди которых в водных растворах устойчивы лишь [UO2(CO3)3]4- и [UO2(CO3)2(H2O)2]2-. Первый преобладает в растворе с избытком ионов СO32- и при разбавлении переходит во второй. Следующей ступенью является образование слаборастворимого карбоната уранила UO2CO3. Фторидные комплексы образуются лишь в средах с высокими концентрациями фтора. Сульфатные комплексные соединения уранила по строению подобны карбонатным, однако по прочности уступают не только карбонатным, но и фторидным. Они характерны лишь для кислой среды с рН 2—4. Очень важную группу комплексных соединений уранил-ион образует с органическими кислотами (щавелевой, уксусной, лимонной, группой гумусовых кислот и т. д.).

Слайд 16
Описание слайда:
Ионы U6+ наиболее устойчивы в условиях окислительной обстановки и отличаются от U4+более высоким значением ионной плотности; в водных растворах неустойчивы и гидролизуются с образованием UO22+и [UO2(H2O)6]+, [UO2(H2O)5]+ и др., а при наличии СО32- - UO2(CO3)22- и др. Гидроксил-уранильный комплекс UO2(OH)2 устойчив при рН 4,5-7, осаждение карбонатных комплексов начинается при рН > 4,5, сульфатных — 4, гуминовых и фульвокомплексов - при рН ~ 7. Ионы U6+ наиболее устойчивы в условиях окислительной обстановки и отличаются от U4+более высоким значением ионной плотности; в водных растворах неустойчивы и гидролизуются с образованием UO22+и [UO2(H2O)6]+, [UO2(H2O)5]+ и др., а при наличии СО32- - UO2(CO3)22- и др. Гидроксил-уранильный комплекс UO2(OH)2 устойчив при рН 4,5-7, осаждение карбонатных комплексов начинается при рН > 4,5, сульфатных — 4, гуминовых и фульвокомплексов - при рН ~ 7. Важное химическое свойство U (особенно U6+) - его сильная восстановительная способность, например для Fe3+. Соединения U6+, растворимы в Н2O, особенно уранил-нитраты, а также сульфаты и оксигалогениды (UO2C12 и UO2F2); UF6 и UC16 летучи, но легко гидролизуются, образуя оксигалогениды. UO4·2H2O растворим в холодной (0,0006 г/100г) и горячей (0,008 г/100г) Н2O; UF4 (0,01 г/100г при 20°С), UF6, UC14 и UC15 гигроскопичны и также реагируют с Н2O при 20°С; хорошо растворим сульфат UO2SO4·3H2O (151,4 г/100г при 20° и 237,8 при 100°С) и UO2F2 (64,4 г/100г при 20° и 74 при 100°С). Главные нерастворимые соединения U6+ - оксиды, фосфаты, арсенаты и ванадаты, которые известны в качестве экзогенных урановых минералов.

Слайд 17
Описание слайда:
Характерна тенденция U6+ к образованию комплексов с карбонатными, сульфатными, фторидными, фосфатными ионами (но не Сl, Br , NO3-). Важное значение имеют устойчивые гидроксокомплексы, карбонатные и органические комплексы (с щавелевой, лимонной, гумусовыми и другими кислотами); сульфатные характерны только для кислой среды. Существенное значение в геохимии U имеют потенциалы окисления-восстановления в условиях различных рН с изменением направления реакции 2Fe2+ + U6+ ↔ 2Fe3+ + U4+ в кислой среде справа налево, а в щелочной - слева направо. Этим определяется разнообразие природных обстановок, приводящих к миграции и осаждению U на различных геохимических барьерах. Характерна тенденция U6+ к образованию комплексов с карбонатными, сульфатными, фторидными, фосфатными ионами (но не Сl, Br , NO3-). Важное значение имеют устойчивые гидроксокомплексы, карбонатные и органические комплексы (с щавелевой, лимонной, гумусовыми и другими кислотами); сульфатные характерны только для кислой среды. Существенное значение в геохимии U имеют потенциалы окисления-восстановления в условиях различных рН с изменением направления реакции 2Fe2+ + U6+ ↔ 2Fe3+ + U4+ в кислой среде справа налево, а в щелочной - слева направо. Этим определяется разнообразие природных обстановок, приводящих к миграции и осаждению U на различных геохимических барьерах.

Слайд 18
Описание слайда:
Радий (Ra) Известны 4 природных изотопа радия: 223Ra (T1/2=11,2 дня), 224Ra (T1/2=3,6 дня), 226Ra (T1/2=1602 года), 228Ra (T1/2=8,8 года). Радий– щелочноземельный элемент, близкий по химическим свойствам к барию. В своих соединениях радий и барий изоструктурны. Радиус иона Ra2+=1,44Å, Ba2+=1,38Å Как и все щелочноземельные элементы, радий обладает единственной формой окисления +2, мало склонен к комплексообразованию, находится в водных растворах в форме иона Ra2+. Радий обладает более основными свойствами, чем барий. Растворимы в воде хлориды, бромиды, йодиды, сульфиды и нитраты радия. Слабо растворимы его сульфаты, карбонаты, фосфаты, хроматы, фториды и оксалаты. Как следует из этой характеристики его свойств, условия миграции радия отличаются от миграции урана, что нередко приводит к нарушению радиоактивного равновесия.

Слайд 19
Описание слайда:
Радон (Rn) В природе известно 3 изотопа радона: 222Rn (радон, T1/2=3,8 дня), 220Rn (торон, T1/2=54,5 с.), 219Rn (актинон, T1/2=3,9 с.), представляющие ряды распада 238U, 232Th и 235U. Химические свойства радона определяются его положением в группе благородных газов Периодической системы. В соответствии с этим, для него характерна химическая инертность и валентность, равная 0. Он не вступает в реакцию с кислородом даже в искровом разряде и в присутствии катализаторов. В обычных условиях радон находится в молекулярном состоянии в виде Rn. Однако он может образовывать клатратные соединения с водой, фенолом, толуолом. При взаимодействии с газообразным фтором радон способен давать соединения типа RnF4, сокристаллизуясь при этом с ксеноном. Аналогично криптону и ксенону радон образует гексагидраты. Rn·6H2O изоморфен с H2S·6H2O и SO2·6H2O.

Слайд 20
Описание слайда:
Изотопы радона растворимы в воде и других жидкостях. Коэффициент растворимости в воде при 15 0С варьирует от 0,25 до 0,30. Растворимости радона падает при повышении температуры. При кипячении он полностью удаляется из раствора. Изотопы радона растворимы в воде и других жидкостях. Коэффициент растворимости в воде при 15 0С варьирует от 0,25 до 0,30. Растворимости радона падает при повышении температуры. При кипячении он полностью удаляется из раствора. Существенно выше его растворимость в органических жидкостях. Хорошая растворимость его в жирах обуславливает его концентрирование жировыми тканями. Радон сорбируется на поверхности твердых тел. Различного рода неогранические гели и органические коллоиды весьма прочно удерживают адсорбированный радон. Лучшим сорбентом является активированный уголь. Адсорбированный радон очень подвижен и легко перераспределяется в твердом теле от крайних молекулярных слоев в более глубокие зоны. Десорбция радона происходит при нагревании. С активированного угля он полностью десорбируется при 350-400 0С. Выделения радона из одной фазы в другую называют эманированием. Коэффициент эманирования радона kRn равен отношению количеству радона, выделившегося из твердого или жидкого тела к его количеству, образовавшемуся в этом теле за тот же интервал времени. Он варьирует от доли процента до десятков процентов.

Слайд 21
Описание слайда:
Полоний (Po) В природе известен ряд изотопов полония: 210Po (T1/2=138 дней), 214Po (T1/2=1,6·10-4 с), 218Po (T1/2=3,5 мин) – ряд 238U; 211Po (T1/2=0,52с), 215Po (T1/2=1,8·10-3 с) - ряд 235U; 212Po (T1/2=2,9·10-7 с) и 216Po (T1/2=0,15 с) – ряд 232Th. Из их характеристик видно, что практическое значение для геохимии может иметь лишь относительно долгоживущий 210Po. Химические свойства полония определяются его положением в VIA группе Периодической системы. Он обладает конфигурацией электронных оболочек подобной селену и теллуру и по химическим свойствам близок к ним. В соответствии с принадлежностью к VIA группе он имеет несколько степеней окисления: -2, +2, +3, +4 и +6. Ро3+ имеет сходство с Bi. Наиболее устойчив в растворе Ро4+.

Слайд 22
Описание слайда:
В природные растворы Ро поступает в ультрамикроконцентрациях. Он склонен к образованию псевдоколлоидов, которые возникают в. результате, адсорбции Ро на коллоидных частицах двуокиси кремния, органических веществ и т. д. Адсорбция носит ионообменный характер. При рН 1- 4 Ро находится в негидролизованных ионных формах; при рН 6 - 7 наблюдаются гидролиз и образование положительно заряженных коллоидных частиц; при рН 8-9 Ро находится в виде отрицательно заряженных коллоидных частиц гидроксидов. В сильнощелочной среде образуется анион РoО32-. Образование псевдоколлоидов происходит в растворах, где произведение растворимости никак не может быть достигнуто. В природные растворы Ро поступает в ультрамикроконцентрациях. Он склонен к образованию псевдоколлоидов, которые возникают в. результате, адсорбции Ро на коллоидных частицах двуокиси кремния, органических веществ и т. д. Адсорбция носит ионообменный характер. При рН 1- 4 Ро находится в негидролизованных ионных формах; при рН 6 - 7 наблюдаются гидролиз и образование положительно заряженных коллоидных частиц; при рН 8-9 Ро находится в виде отрицательно заряженных коллоидных частиц гидроксидов. В сильнощелочной среде образуется анион РoО32-. Образование псевдоколлоидов происходит в растворах, где произведение растворимости никак не может быть достигнуто. Для Ро характерна способность к комплексообразованию с различными анионами. Геохимическое значение имеет лишь наиболее долгоживущий изотоп - 210Ро. Он образуется при распаде 222Rn. Обычным его спутником является более долгоживущий 210 РЬ (22 года), из которого 210Ро образуется по следующей цепочке: 210РЬ β → 210Bi β → 210Ро α→ 206РЬ. 22 года 5 дней 138 дней

Слайд 23
Описание слайда:
Протактиний (Pa) Атом Pa (5f56d17s2) состоит только из радиоактивных изотопов. В природе установлено лишь два изотопа: 231Ра (Т1/2 3,43-104 лет) - ряд 235U, 234Ра (2 изомера Т1/2 6,75 ч и 1,175 мин) - ряд 238U. Расположен в V группе периодической системы с Та, Pr, Dy и др. и геохимически близок к этим элементам, являясь химическим аналогом тантала. По некоторым свойствам близок также к Zr и Hf. Протактиний – член семейства актиноидов и, соответственно, по химическим свойствам близок к U и Th. Как и U, взаимодействует с кислотами и водяным паром и не реагирует со щелочами. Относится к химически инертным элементам (как и Та), но на воздухе Ра4+ окисляется в Ра5+ с образованием защитной пленки. Соединения Ра слабо растворимы, легко гидролизуются и быстро адсорбируются коллоидными частицами других веществ, образуя псевдоколлоиды на поверхности твердых фаз. Наиболее типичные простые соединения разной валентности: Ра4+ - PaO2, [Pa(H2O)]4+(aq), PaF4, РаС14 и т.д.; Pa5+ - Pa2O5, РаО2+ (соединения), PaF5 РаСl5 и т.д, [PaF6]-, [PaF,]3-; Ра3+ - PaJ3.

Слайд 24
Описание слайда:
Протактиний (Pa) Катионы протактиния легко образуют комплексные соединения, однако большинство из них так же неустойчиво к гидролизу, как и простые соединения. В водных растворах сравнительно устойчивы лишь фторидные, сульфатные и некоторые органические комплексные соединения. Металлический Ра при повышенной температуре образует гидрид (250 °С), карбид (1200 °С), оксид Ра2О5 (> 650 °С); известны соединения РаР, РаР2, Ра3Р4 и сходные с As, Sb, S, Se, а также комплексы с NО3, S04, C2H2, CH3 и т.д.

Слайд 25
Описание слайда:
Гелий (He) Гелий – нерадиоактивный элемент. После водорода гелий – самый легкий из всех газов. Относится к восьмой группе главной подгруппу периодической системы. Составляющие эту подгруппу элементы характеризуются очень низкой химической активностью, что дало основание называть их благородными или инертными газами. Гелий характеризуется химической инертностью и 0-й степенью окисления. Температура сжижения гелия -268,9°С, затвердевания -271,4°С при давлении 3,0 МПа. В природе известно 2 изотопа гелия – 4He и 3He. 3He рассматривается как газ, захваченный Землей в начальный момент ее формирования, 4He – как продукт термоядерного синтеза и радиоактивного распада тяжелых ядер. Гелий характеризуется хорошей растворимостью в магматических расплавах. Он способен легко проникать через кварцевое стекло. Это свойство используется в методике его определения. Изотоп 3He – единственное вещество пригодное для измерения температур ниже 1К.

Слайд 26
Описание слайда:
Ряды распада В отличие от долгоживущих природных радионуклидов 238U, 235U и 232Th не сразу превращаются в стабильные дочерние продукты, а образуют длинные цепочки относительно короткоживущих промежуточных продуктов распада, которые называются рядами распада или радиоактивными семействами

Слайд 27
Описание слайда:
Ряды распада

Слайд 28
Описание слайда:
Ряды распада

Слайд 29
Описание слайда:
Альфа-распад заключается в способности ядер превращаться в другие более легкие ядра путем испускания α-частиц – ядер гелия (42He). Альфа-частицы относятся к группе тяжелых заряженных частиц. Энергия α-частиц, испускаемых в процессе альфа-распада находится в пределах 3,15(209Bi) – 8,8 (212Po)Мэв Альфа-распад заключается в способности ядер превращаться в другие более легкие ядра путем испускания α-частиц – ядер гелия (42He). Альфа-частицы относятся к группе тяжелых заряженных частиц. Энергия α-частиц, испускаемых в процессе альфа-распада находится в пределах 3,15(209Bi) – 8,8 (212Po)Мэв Бета–распад – это переход радиоактивных ядер в стабильное состояние путем превращения избыточных нейтронов в протон с испусканием электрона. При этом формируется β-излучение, представляющее собой поток электронов, образующий в процессе β – распада. Помимо α-распада для очень тяжелых ядер возможен и иной тип превращений – спонтанное деление на два сравнимых по массе осколка с испусканием нескольких нейтронов. Спонтанное деление наблюдается для ядер с массовым числом не менее 232 и имеет очень малую вероятность по сравнению с конкурирующим α-распадом. Это свойство тяжелых атомов используется в практике для изучения радионуклидов методом осколочной радиографии. Гамма – излучение представляет собой коротковолновое электромагнитное излучение, возникающее при ядерных превращениях, изменении энергетического состояния ядер и аннигиляции частиц. Длина волны λ для γ-излучения меньше межатомного расстояния (10-10 м). Радионуклиды характеризуются строго определенными спектрами γ-излучения, которые используются для гамма-спектрометрического анализа.

Слайд 30
Описание слайда:

Слайд 31
Описание слайда:
В каждом из природных рядов встречается определенная последовательность превращений, когда за одним альфа-распадом следуют два бета-распада или наоборот. В каждом из природных рядов встречается определенная последовательность превращений, когда за одним альфа-распадом следуют два бета-распада или наоборот. Альфа-распад уменьшает заряд ядра на 2 единицы, а два бета-распада увеличивают его также на 2 единицы, то есть возвращают к прежнему значению. В результате появляется новый изотоп одного и того же элемента, который на 4 атомных единицы массы меньше первичного (за счет альфа-распада). Примером могут служить группы изотопов в ряду урана-238: 238U и 234U, 234Th и 230Th, 218Pb, 214Pb, 210Pb и 206РЬ и др. Аналогичные группы имеют место и в других рядах. Альфа- частицы являются ядрами 4Не. Поэтому при их стабилизации после присоединения двух электронов появляются атомы 4Не. В ряду урана-238 образуется 8 атомов 4Не, в ряду урана-235 - 7 атомов, а в ряду тория-232 - 6 атомов. Таким образом, радиоактивный распад природных рядов ведет к появлению 4Не.

Слайд 32
Описание слайда:
Радиоактивное равновесие в рядах распада Члены каждого ряда связаны друг с другом последовательными необратимыми альфа- и бета- превращениями. Если система, в которой находятся радионуклиды того или иного ряда, закрыта, то есть не происходит выноса или поступления отдельных ее членов относительно других, то со временем в ряду наступает радиоактивное равновесие. Так как периоды полураспада материнских радионуклидов – родоначальников рядов – много больше периодов полураспада дочерних (промежуточных) членов, то условие равновесия выражается соотношениями: N1/T1 = N2/T2 = …Ni/Ti = А или N1/λ1 = N2/ λ2… = Ni/ λi = А; N1/ λ1/ N2/ λ2 = 1, где N – число атомов, λ – константа распада, Т – период полураспада, А – активность, Бк.

Слайд 33
Описание слайда:
Это соотношение определяет так называемое «вековое» равновесие (Баранов, 1956). Скорость установления радиоактивного равновесия в ряду распада зависит от периода полураспада наиболее долгоживущего члена ряда, а для пары взаимосвязанных радионуклидов определяется периодом полураспада дочернего – TД. С точностью до 0,8% равновесие наступает через 7TД, а с точностью до 0,1% – через 10TД. Так, для ряда U-238 наиболее долгоживущим промежуточным членом ряда является 234U с периодом полураспада 248 тыс. лет. Поэтому радиоактивное равновесие в целом по ряду наступит лишь через 1,7 млн лет (с точностью до 1%). В ряду Th-232, где наиболее долгоживущим является 228Ra с периодом полураспада, равным 5,75 года, равновесие будет наблюдаться всего через 40 лет (с точностью до 1%). Это соотношение определяет так называемое «вековое» равновесие (Баранов, 1956). Скорость установления радиоактивного равновесия в ряду распада зависит от периода полураспада наиболее долгоживущего члена ряда, а для пары взаимосвязанных радионуклидов определяется периодом полураспада дочернего – TД. С точностью до 0,8% равновесие наступает через 7TД, а с точностью до 0,1% – через 10TД. Так, для ряда U-238 наиболее долгоживущим промежуточным членом ряда является 234U с периодом полураспада 248 тыс. лет. Поэтому радиоактивное равновесие в целом по ряду наступит лишь через 1,7 млн лет (с точностью до 1%). В ряду Th-232, где наиболее долгоживущим является 228Ra с периодом полураспада, равным 5,75 года, равновесие будет наблюдаться всего через 40 лет (с точностью до 1%).

Слайд 34
Описание слайда:
В зависимости от соотношения периодов полураспада материнского ТМ и дочернего TД может встречаться несколько вариантов изменения их активностей (Титаева, 2000): В зависимости от соотношения периодов полураспада материнского ТМ и дочернего TД может встречаться несколько вариантов изменения их активностей (Титаева, 2000): ТМ < TД. Материнский радионуклид распадается быстрее, чем дочерний. В этом случае равновесие наступить не может, если материнский радионуклид изолирован и не подкреплен предыдущим, более долгоживущим членом ряда. Активность материнского радионуклида при этом уменьшается в соответствии с уравнением N = N0exp(-At). Примером может служить пара 234Тh (24 дня) - 234U (244 тыс. лет). 2. ТМ > TД. Если период полураспада материнского радионуклида соизмерим или несколько больше периода полураспада дочернего, то с течением времени активность дочернего возрастет до состояния подвижного равновесия с материнским. Затем их активности, равные между собой, будут уменьшаться в соответствии с ТМ. Примером может служить пара 228Ra (5,75 года) – 228Th (1,9 года). 3. TM >> TД. Чаще используются пары, где период полураспада материнского (например, родоначальника ряда) много больше дочернего радионуклида. В этом случае через 10TД (с точностью до 0,1%) наступает вековое равновесие, описываемое приведенным выше уравнением. В природных системах редко встречаются случаи, когда присутствует только материнский радионуклид, а дочерние полностью отсутствуют. Обычно некоторое их количество находится в системе вместе с материнскими атомами.

Слайд 35
Описание слайда:
Радиоактивное равновесие в данном ряду распада считается нарушенным, если соотношение между членами ряда не удовлетворяет приведенному выше выражению, а отношения активностей отдельных радионуклидов не соответствует единице (Титаева, 2005). Радиоактивное равновесие в данном ряду распада считается нарушенным, если соотношение между членами ряда не удовлетворяет приведенному выше выражению, а отношения активностей отдельных радионуклидов не соответствует единице (Титаева, 2005). В открытой системе радиоактивное равновесие может быть нарушено в результате перемещения атомов одних членов ряда относительно других из системы либо в систему. При этом перемещение атомов должно происходить на расстояние, превышающее размер системы, и за время, более короткое, чем то, которое необходимо для восстановления равновесия. Нарушение радиоактивного равновесия является результатом геохимической дифференциации членов одного ряда, где одни из них оказываются в данных условиях более подвижными, чем другие. Важнейшими процессами, приводящими к такой дифференциации, являются процессы растворения и осаждения, которые локализуются на границе раздела жидкой и твердой фаз. Однако подобные процессы нередко могут возникать также и на границах газ/твердое вещество и газ/жидкость.

Слайд 36
Описание слайда:
Существуют три основные группы факторов, приводящие к нарушению радиоактивного равновесия в рядах распада (Титаева,2005): Существуют три основные группы факторов, приводящие к нарушению радиоактивного равновесия в рядах распада (Титаева,2005): – различие химических свойств элементов, изотопами которых являются исследуемые радионуклиды, – свойства элементов, связанные с радиоактивностью – физико-химические условия окружающей среды. Исключительно химическими свойствами членов рядов распада обусловлено геохимическое поведение лишь наиболее долгоживущих и распространенных в природе родоначальников рядов: 238U и 232Th, концентрации которых сопоставимы с концентрациями большинства микроэлементов. Геохимия остальных членов рядов при равных физико-химических условиях среды обусловлена как их химическими особенностями, так и факторами, связанными с радиоактивностью: а) происхождением из того или иного родоначальника ряда; б) скоростью радиоактивного распада (или накопления); в) энергией радиоактивной отдачи; г) концентрацией и зависимостью от присутствия носителей. Обычно нарушения радиоактивного равновесия наблюдаются на границе раздела двух фаз, т.е. на границе двух систем. В природе часто такие условия создаются при взаимодействии природных вод, циркулирующих по порам и трещинам, с горными породами, рыхлыми осадками или почвами. В зависимости от состава растворенных в воде ионов, величин рН и Eh одни дочерние нуклиды могут оказаться более растворимы, чем другие. В результате селективного выщелачивания произойдет дифференциация радионуклидов, принадлежащих к одному ряду распада. Жидкая фаза окажется обогащенной наиболее растворимыми членами ряда; твердая фаза, напротив, будет испытывать их дефицит. В результате и горные породы, и циркулирующие по ним воды будут характеризоваться нарушением радиоактивного равновесия в рядах распада. Процессы селективного осаждения радионуклидов из природных вод и последующей их адсорбции на твердой фазе также являются механизмами, способствующими нарушению радиоактивного равновесия среди членов одного ряда.

Слайд 37
Описание слайда:
Рассмотрим некоторые примеры (Титаева, 2000). Рассмотрим некоторые примеры (Титаева, 2000). 1) При выветривании горных пород природные воды будут окислять атомы урана, находящиеся на поверхности минеральных зерен, и переводить их в раствор. При этом дочерние атомы изотопов тория (234Th и 230Th), обладающие существенно меньшей растворимостью, в значительной степени останутся на месте. В результате горные породы в зоне выветривания и особенно почвы приобретают неравновесные отношения активностей с избытком 230Th (230Th/234U > 2,0), а воды, напротив, характеризуются относительным дефицитом 230Th (230Th/234U < 0,5). 2) В океанической воде 238U и 234U находятся в растворе в составе устойчивых карбонатных комплексов, а образующийся из 234U дочерний радионуклид 230Th будет адсорбироваться на взвешенных частичках или соосаждаться с гидроксидами железа, обогащая таким образом донные осадки. В результате радиоактивное равновесие оказывается нарушенным и в воде, и в осадках. 3) Примером иной геохимической обстановки может служить взаимодействие подземных вод с водовмещающими породами в зоне контакта с углеводородными залежами, создающими резко восстановительные условия. В этих условиях окисления атомов урана не происходит и переход их в воду ничтожно мал. В то же время дочерний 226Ra легко выщелачивается из горных пород и весьма устойчив в растворе в хлоридных бессульфатных барийсодержащих рассолах. В итоге радиоактивное равновесие на контакте порода – вода резко нарушается, а отношение активностей 226Ra/238U в рассолах может достигать 102-104.

Слайд 38
Описание слайда:
В практике геологоразведочных работ особое значение имеет радиоактивное равновесие между ураном и радием и ураном, торием и конечными продуктами распада – изотопами свинца. В практике геологоразведочных работ особое значение имеет радиоактивное равновесие между ураном и радием и ураном, торием и конечными продуктами распада – изотопами свинца. Крр= 2,94∙108 СRa/ СU


Скачать презентацию на тему Свойства радиоактивных элементов можно ниже:

Похожие презентации