Дифракция света

Содержание


Презентации» Физика» Презентация Дифракция света
(от лат.difractus – разломанный, преломленный, огибание светом препятствий, размеры которых Дифракцией света называется явление отклонения света от прямолинейного направления распространения приЕсли на пути параллельного светового пучка расположено круглое препятствие (круглый диск,Если препятствие имеет линейный характер (щель, нить, край экрана), то наУсловия наблюдения
   Для наблюдения дифракции света необходимо создать определенныеДифракцию света наблюдал в 1802 г. англ.физик Томас Юнг, открывший интерференцию.
Принцип Гюйгенса-Френеля
 Волновая поверхность в любой момент времени представляет собой неДля того, чтобы дифракционная картина была достаточно яркой, нужно пропускать светДифракционная решетка
   Этот оптический прибор представляет собой отражающую илиДифракционная решеткаДифракционная решетка увеличена
 Дифракционная решетка увеличена
     Решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхностиПростейшая дифракционная решетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками.При прохождении через дифракционную решетку пучок белого света разлагается в спектр.На рис.  изображены спектры различных порядков для белого света. Максимум нулевогоФормула дифракционной решетки
 dsinφ=kλ,
 где k=0,1,2,3,... называется порядком главного максимумаПрименение
 Исследование спектрального состава вещества
 Измерение длины волныДифракционные решетки применялись для спектрального анализа уже в начале XIX века.Он наносил до 300 линий на 1 мм поверхности пластины.
 ОнДифракция в природе
 Если рассмотреть под микроскопом крылья бабочек, то можноЧто такое голография?
 Среди разнообразных практических применений волновых свойств света одноПрименение голографии
 Голографические изображения уникальных предметов искусства дают возможность «увидеть» эти



Слайды и текст этой презентации
Слайд 1
Описание слайда:
(от лат.difractus – разломанный, преломленный, огибание светом препятствий, размеры которых соизмеримы с длиной световой волны.


Слайд 2
Описание слайда:
Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени.

Слайд 3
Описание слайда:
Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец.

Слайд 4
Описание слайда:
Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Слайд 5
Описание слайда:
Условия наблюдения Для наблюдения дифракции света необходимо создать определенные условия: длина волны должна быть сравнима с размерами препятствий. На расстоянии L от препятствия дифракция наблюдается, если L≈D²/4λ, D – линейные размеры препятствия, λ – длина волны.

Слайд 6
Описание слайда:
Дифракцию света наблюдал в 1802 г. англ.физик Томас Юнг, открывший интерференцию. Дифракцию света наблюдал в 1802 г. англ.физик Томас Юнг, открывший интерференцию. Исследование дифракции световых волн получило свое завершение в работах фран.физика Огюстена Жана Френеля (1788-1827) в 1816-1827г.г. В своем труде «Мемуар о дифракции света», опубликованном в 1819 году, Френель продемонстрировал, что итоговая волна не просто огибающая, а результат интерференции вторичных волн. Это уточненная формулировка называется сейчас принципом Гюйгенса-Френеля.

Слайд 7
Описание слайда:
Принцип Гюйгенса-Френеля Волновая поверхность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат их интерференции.

Слайд 8
Описание слайда:
Для того, чтобы дифракционная картина была достаточно яркой, нужно пропускать свет через несколько параллельных щелей. Для того, чтобы дифракционная картина была достаточно яркой, нужно пропускать свет через несколько параллельных щелей. Оптический прибор, представляющий собой совокупность большого числа препятствий и отверстий, сосредоточенных в ограниченном пространстве, на которых происходит дифракция света, называется дифракционной решеткой.

Слайд 9
Описание слайда:
Дифракционная решетка Этот оптический прибор представляет собой отражающую или прозрачную пластинку с нанесенными на нее параллельными штрихами. В 1786 году американский астроном Дэвид Риттенхаус (1732-1796) обнаружил, что, пропуская через такую решетку белый свет, можно получить его спектр. Причем, в отличие от призмы, решетка дает не один, а несколько спектров.

Слайд 10
Описание слайда:
Дифракционная решетка

Слайд 11
Описание слайда:
Дифракционная решетка увеличена Дифракционная решетка увеличена период дифракционной решетки d =1 мм / N (число штрихов)

Слайд 12
Описание слайда:
Решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки. У хороших решеток параллельные друг другу штрихи имеют длину порядка 10 см, а на каждый миллиметр приходится до 2000 штрихов. При этом общая длина решетки достигает 10–15 см. Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с 50 – 100 штрихами на миллиметр, нанесенными на поверхность прозрачной пленки. В качестве дифракционной решетки может быть использован кусочек компакт-диска или даже осколок граммофонной пластинки. Ваши ресницы также могут играть роль дифракционной решетки. Решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки. У хороших решеток параллельные друг другу штрихи имеют длину порядка 10 см, а на каждый миллиметр приходится до 2000 штрихов. При этом общая длина решетки достигает 10–15 см. Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с 50 – 100 штрихами на миллиметр, нанесенными на поверхность прозрачной пленки. В качестве дифракционной решетки может быть использован кусочек компакт-диска или даже осколок граммофонной пластинки. Ваши ресницы также могут играть роль дифракционной решетки.

Слайд 13
Описание слайда:
Простейшая дифракционная решетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками. Если на решетку падает свет, то в каждом порядке дифракции возникает спектр исследуемого излучения, причем фиолетовая часть спектра располагается ближе к максимуму нулевого порядка. Простейшая дифракционная решетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками. Если на решетку падает свет, то в каждом порядке дифракции возникает спектр исследуемого излучения, причем фиолетовая часть спектра располагается ближе к максимуму нулевого порядка.

Слайд 14
Описание слайда:
При прохождении через дифракционную решетку пучок белого света разлагается в спектр. Наибольшее значение угол дифракции имеет для красного света. Наименьшее значение – для фиолетового. При прохождении через дифракционную решетку пучок белого света разлагается в спектр. Наибольшее значение угол дифракции имеет для красного света. Наименьшее значение – для фиолетового.

Слайд 15
Описание слайда:
На рис.  изображены спектры различных порядков для белого света. Максимум нулевого порядка остается неокрашенным. На рис.  изображены спектры различных порядков для белого света. Максимум нулевого порядка остается неокрашенным.

Слайд 16
Описание слайда:
Формула дифракционной решетки dsinφ=kλ, где k=0,1,2,3,... называется порядком главного максимума

Слайд 17
Описание слайда:
Применение Исследование спектрального состава вещества Измерение длины волны

Слайд 18
Описание слайда:
Дифракционные решетки применялись для спектрального анализа уже в начале XIX века. Дифракционные решетки применялись для спектрального анализа уже в начале XIX века.

Слайд 19
Описание слайда:
Он наносил до 300 линий на 1 мм поверхности пластины. Он наносил до 300 линий на 1 мм поверхности пластины. А сейчас самые, пожалуй, распространенные решетки – лазерные диски. Области, на которых зафиксирована информация, имеют микроскопические бугорки, а запись производится по концентрическим окружностям. В результате поверхность компакт-диска образует одну большую решетку. В современных дифракционных решетках до 2400 линий на 1 мм. Изготовлять их механически невозможно, поэтому используется другой метод: фотографируют картину интерференции двух световых пучков, пересекающихся под углом. Она имеет вид параллельных полос, расстояние между которыми порядка длины волны падающего света.

Слайд 20
Описание слайда:
Дифракция в природе Если рассмотреть под микроскопом крылья бабочек, то можно заметить, что они состоят из большого числа элементов, размер которых имеет порядок длины видимого света. Таким образом, крыло бабочки представляет собой своеобразную дифракционную решетку. Радужная полоска видна в глазах стрекоз и других насекомых. Она образуется благодаря тому, что их сложные глаза состоят из большого числа отдельных «глазков» -фасеток, т.е тоже являются «живыми» дифракционными решетками.

Слайд 21
Описание слайда:
Что такое голография? Среди разнообразных практических применений волновых свойств света одно из наиболее интересных – голография. Идеи и принципы голографии сформулировал в 1948 г. венгерский физик Деннис Габор. Голографический метод получения изображения состоит из двух этапов. Сначала получают голограмму – интерференционную картину, возникающую на фотопластинке при сложении двух когерентных пучков света. Один из них отражается от зеркала, другой от предмета. Эти пучки света образуют на фотопластинке интерференционную картину, представляющую собой чередование светлых и темных пятен. Процесс получения изображения с помощью голограммы называют восстановлением. Для восстановления голограммы на неё направляют опорный пучок когерентного света. Опорный пучок, падая на голограмму, возбуждает в прозрачных ее местах колебание вторичных источников. По принципу Гюйгенса-Френеля вторичные источники создают в окружающем пространстве такую же картину волновых полей, какая была в сигнальном пучке от предмета. Точное совпадение восстановленного волнового фронта с сигнальным приводит к тому, что воспринимаемое зрением изображение по внешнему виду неотличимо от предмета.

Слайд 22
Описание слайда:
Применение голографии Голографические изображения уникальных предметов искусства дают возможность «увидеть» эти предметы одновременно многим людям в разных местах. Можно восстанавливать голограмму, просвечивая ее когерентным излучением, имеющим длину волны, которая больше длины волны излучения, с помощью которого была получена голограмма. В этом случае размер изображения будет больше размера предмета. На этом основано действие голографических микроскопов. Голографическая запись с использованием лазерного пучка позволяет фиксировать вибрации и деформации, возникающие в различных узлах и деталях работающих машин. Еще одно техническое применение голографии – количественные исследования воздушных потоков в аэродинамических трубах.


Презентация на тему Дифракция света доступна для скачивания ниже:

Похожие презентации