Introduction to Vectors презентация




Слайды и текст этой презентации
Слайд 1
Описание слайда:
Introduction to Vectors Karashbayeva Zh.O.


Слайд 2
Описание слайда:
What are Vectors? Vectors are pairs of a direction and a magnitude. We usually represent a vector with an arrow:

Слайд 3
Описание слайда:
Vectors in Rn

Слайд 4
Описание слайда:
Multiples of Vectors Given a real number c, we can multiply a vector by c by multiplying its magnitude by c:

Слайд 5
Описание слайда:
Adding Vectors Two vectors can be added using the Parallelogram Law

Слайд 6
Описание слайда:
Combinations These operations can be combined.

Слайд 7
Описание слайда:
Components To do computations with vectors, we place them in the plane and find their components.

Слайд 8
Описание слайда:
Components The initial point is the tail, the head is the terminal point. The components are obtained by subtracting coordinates of the initial point from those of the terminal point.

Слайд 9
Описание слайда:
Components The first component of v is 5 -2 = 3. The second is 6 -2 = 4. We write v = <3,4>

Слайд 10
Описание слайда:
Magnitude The magnitude of the vector is the length of the segment, it is written ||v||.

Слайд 11
Описание слайда:
Scalar Multiplication Once we have a vector in component form, the arithmetic operations are easy. To multiply a vector by a real number, simply multiply each component by that number. Example: If v = <3,4>, -2v = <-6,-8>

Слайд 12
Описание слайда:
Addition To add vectors, simply add their components. For example, if v = <3,4> and w = <-2,5>, then v + w = <1,9>. Other combinations are possible. For example: 4v – 2w = <16,6>.

Слайд 13
Описание слайда:
Unit Vectors A unit vector is a vector with magnitude 1. Given a vector v, we can form a unit vector by multiplying the vector by 1/||v||. For example, find the unit vector in the direction <3,4>:

Слайд 14
Описание слайда:
Special Unit Vectors A vector such as <3,4> can be written as 3<1,0> + 4<0,1>. For this reason, these vectors are given special names: i = <1,0> and j = <0,1>. A vector in component form v = <a,b> can be written ai + bj.

Слайд 15
Описание слайда:

Слайд 16
Описание слайда:

Слайд 17
Описание слайда:
Spanning Sets and Linear Independence

Слайд 18
Описание слайда:

Слайд 19
Описание слайда:

Слайд 20
Описание слайда:

Слайд 21
Описание слайда:

Слайд 22
Описание слайда:

Слайд 23
Описание слайда:

Слайд 24
Описание слайда:

Слайд 25
Описание слайда:

Слайд 26
Описание слайда:

Слайд 27
Описание слайда:
EX: Testing for linear independence EX: Testing for linear independence Determine whether the following set of vectors in P2 is L.I. or L.D.

Слайд 28
Описание слайда:
Basis and Dimension Basis :

Слайд 29
Описание слайда:

Слайд 30
Описание слайда:

Слайд 31
Описание слайда:


Скачать презентацию на тему Introduction to Vectors можно ниже:

Похожие презентации