Презентация, доклад Металл золото
Вы можете изучить и скачать доклад-презентацию на
тему Металл золото.
Презентация на заданную тему содержит 8 слайдов. Для просмотра воспользуйтесь
проигрывателем,
если материал оказался полезным для Вас - поделитесь им с друзьями с
помощью социальных кнопок и добавьте наш сайт презентаций в закладки!
Презентации»
Физика»
Металл золото








Слайды и текст этой презентации
Слайд 2


Описание слайда:
химический элемент с атомным номером 79, атомная масса 196,9665. Известно с глубокой древности. В природе один стабильный изотоп 197Au. Конфигурация внешней и предвнешней электронных оболочек 5 s 2 p 6 d 106 s1. Расположено в IВ группе и 6-м периоде периодической системы, относится к благородным металлам. Степени окисления 0, +1, +3, +5 (валентности от I, III, V).
Металлический радиус атома золота 0,137 нм, радиус иона Au+ — 0,151 нм для координационного числа 6, иона Au3+ — 0,084 нм и 0,099 нм для координационных чисел 4 и 6. Энергии ионизации Au0 — Au+ — Au2+ — Au3+ соответственно равны 9,23, 20,5 и 30,47 эВ. Электроотрицательность по Полингу 2,4.
Слайд 3


Описание слайда:
Содержание в земной коре 4,3·10–7% по массе, в воде морей и океанов менее 5·10–6% мг/л. Относится к рассеянным элементам. Известно более 20 минералов, из которых главный — самородное золото (электрум, медистое, палладиевое, висмутовое золото). Самородки большого размера встречаются крайне редко и, как правило, имеют именные названия. Химические соединения золота в природе редки, в основном это теллуриды — калеверит AuTe2, креннерит (Au,Ag)Te2 и другие. Золото может присутствовать в виде примеси в различных сульфидных минералах: пирите , халькопирите , сфалерите и других.
Современные методы химического анализа позволяют обнаружить присутствие ничтожных количеств Au в организмах растений и животных, в винах и коньяках, в минеральных водах и в морской воде.
Слайд 4


Описание слайда:
Золото было известно человечеству с древнейших времен. Возможно, оно явилось первым металлом, с которым познакомился человек. Имеются данные о добыче золота и изготовлении изделий из него в Древнем Египте (4100-3900 годы до н. э.), Индии и Индокитае (2000-1500 годы до н. э.), где из него изготавливали деньги, дорогие украшения, произведений культа и искусства.
Слайд 6
![Получение
Источники золота при его промышленном получении — руды и пески золотых россыпных и коренных месторождений, содержание золота в которых составляет 5-15 г на тонну исходного материала, а также промежуточные продукты (0,5-3 г/т) свинцово-цинкового, медного, уранового и некоторых других производств.
Процесс получения золота из россыпей основан на разнице плотностей золота и песка. С помощью мощных струй воды измельченную золотоносную породу переводят во взвешенное в воде состояние. Полученная пульпа стекает в драге по наклонной плоскости. При этом тяжелые частицы золота оседают, а песчинки уносятся водой.
Другим способом золото извлекают из руды, обрабатывая ее жидкой ртутью и получая жидкий сплав — амальгаму. Далее амальгаму нагревают, ртуть испаряется, а золото остается. Применяют и цианидный способ извлечения золота из руд. В этом случае золотоносную руду обрабатывают раствором цианида натрия NaCN. В присутствии кислорода воздуха золото переходит в раствор:
4Au + O2 + 8NaCN + 2H2O = 4Na[Au(CN)2] + 4NaOH
Далее полученный раствор комплекса золота обрабатывают цинковой пылью:
2Na[Au(CN)2] + Zn = Na2[Zn(CN)4) + 2AuЇ
Очищают золото растворением в царской водке:
Au + HNO3 + 4HCl = H[AuCl4] + NO +H2O
с последующим избирательным осаждением золота из раствора, например, с помощью FeSO4.](/documents_3/7071f23e51236a1a06da7dcf68d3ddca/img5.jpg)
![Получение
Источники золота при его промышленном получении — руды и пески золотых россыпных и коренных месторождений, содержание золота в которых составляет 5-15 г на тонну исходного материала, а также промежуточные продукты (0,5-3 г/т) свинцово-цинкового, медного, уранового и некоторых других производств.
Процесс получения золота из россыпей основан на разнице плотностей золота и песка. С помощью мощных струй воды измельченную золотоносную породу переводят во взвешенное в воде состояние. Полученная пульпа стекает в драге по наклонной плоскости. При этом тяжелые частицы золота оседают, а песчинки уносятся водой.
Другим способом золото извлекают из руды, обрабатывая ее жидкой ртутью и получая жидкий сплав — амальгаму. Далее амальгаму нагревают, ртуть испаряется, а золото остается. Применяют и цианидный способ извлечения золота из руд. В этом случае золотоносную руду обрабатывают раствором цианида натрия NaCN. В присутствии кислорода воздуха золото переходит в раствор:
4Au + O2 + 8NaCN + 2H2O = 4Na[Au(CN)2] + 4NaOH
Далее полученный раствор комплекса золота обрабатывают цинковой пылью:
2Na[Au(CN)2] + Zn = Na2[Zn(CN)4) + 2AuЇ
Очищают золото растворением в царской водке:
Au + HNO3 + 4HCl = H[AuCl4] + NO +H2O
с последующим избирательным осаждением золота из раствора, например, с помощью FeSO4.](/documents_3/7071f23e51236a1a06da7dcf68d3ddca/img5.jpg)
Описание слайда:
Получение
Источники золота при его промышленном получении — руды и пески золотых россыпных и коренных месторождений, содержание золота в которых составляет 5-15 г на тонну исходного материала, а также промежуточные продукты (0,5-3 г/т) свинцово-цинкового, медного, уранового и некоторых других производств.
Процесс получения золота из россыпей основан на разнице плотностей золота и песка. С помощью мощных струй воды измельченную золотоносную породу переводят во взвешенное в воде состояние. Полученная пульпа стекает в драге по наклонной плоскости. При этом тяжелые частицы золота оседают, а песчинки уносятся водой.
Другим способом золото извлекают из руды, обрабатывая ее жидкой ртутью и получая жидкий сплав — амальгаму. Далее амальгаму нагревают, ртуть испаряется, а золото остается. Применяют и цианидный способ извлечения золота из руд. В этом случае золотоносную руду обрабатывают раствором цианида натрия NaCN. В присутствии кислорода воздуха золото переходит в раствор:
4Au + O2 + 8NaCN + 2H2O = 4Na[Au(CN)2] + 4NaOH
Далее полученный раствор комплекса золота обрабатывают цинковой пылью:
2Na[Au(CN)2] + Zn = Na2[Zn(CN)4) + 2AuЇ
Очищают золото растворением в царской водке:
Au + HNO3 + 4HCl = H[AuCl4] + NO +H2O
с последующим избирательным осаждением золота из раствора, например, с помощью FeSO4.
Слайд 7
![Физические и химические свойства
Золото — желтый металл с кубической гранецентрированной решеткой ( a = 0,40786 нм). Температура плавления 1064,4 °C, температура кипения 2880 °C, плотность 19,32 кг/дм3. Обладает исключительной пластичностью, теплопроводностью и электропроводимостью. Шарик золота диаметром в 1 мм можно расплющить в тончайший лист, просвечивающий голубовато-зеленым цветом, площадью 50 м2. Толщина самых тонких листочков золота 0,1 мкм. Из золота можно вытянуть тончайшие нити.
Золото устойчиво на воздухе и в воде. С кислородом, азотом, водородом, фосфором, сурьмой и углеродом непосредственно не взаимодействует. Антимонид AuSb2 и фосфид золота Au2P3 получают косвенными путями.
В ряду стандартных потенциалов золото расположено правее водорода, поэтому с неокисляющими кислотами в реакции не вступает. Растворяется в горячей селеновой кислоте:
6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O,
в концентрированной соляной кислоте при пропускании через раствор хлора:
2Au + 3Cl2 + 2HCl = 2H[AuCl4]
При аккуратном упаривании получаемого раствора можно получить желтые кристаллы золотохлористоводородной кислоты HAuCl4·3H2O.
С галогенами без нагревания в отсутствие влаги золото не реагирует. При нагревании порошка золота с галогенами или с дифторидом ксенона образуются галогениды золота:
2Au + 3Cl2 = 2AuCl3,
2Au + 3XeF2 = 2AuF3 + 3Xe
В воде растворимы только AuCl3 и AuBr3, состоящие из димерных молекул:
Термическим разложением гексафторауратов (V), например, O2+[AuF6]– получены фториды золота AuF5 и AuF7. Их также можно получить, окисляя золото или его трифторид с помощью KrF2 и XeF6.
Моногалогениды золота AuCl, AuBr и AuI образуются при нагревании в вакууме соответствующих высших галогенидов. При нагревании они или разлагаются:
2AuCl = 2Au + Cl2
или диспропорционируют:
3AuBr = AuBr3 + 2Au.](/documents_3/7071f23e51236a1a06da7dcf68d3ddca/img6.jpg)
![Физические и химические свойства
Золото — желтый металл с кубической гранецентрированной решеткой ( a = 0,40786 нм). Температура плавления 1064,4 °C, температура кипения 2880 °C, плотность 19,32 кг/дм3. Обладает исключительной пластичностью, теплопроводностью и электропроводимостью. Шарик золота диаметром в 1 мм можно расплющить в тончайший лист, просвечивающий голубовато-зеленым цветом, площадью 50 м2. Толщина самых тонких листочков золота 0,1 мкм. Из золота можно вытянуть тончайшие нити.
Золото устойчиво на воздухе и в воде. С кислородом, азотом, водородом, фосфором, сурьмой и углеродом непосредственно не взаимодействует. Антимонид AuSb2 и фосфид золота Au2P3 получают косвенными путями.
В ряду стандартных потенциалов золото расположено правее водорода, поэтому с неокисляющими кислотами в реакции не вступает. Растворяется в горячей селеновой кислоте:
6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O,
в концентрированной соляной кислоте при пропускании через раствор хлора:
2Au + 3Cl2 + 2HCl = 2H[AuCl4]
При аккуратном упаривании получаемого раствора можно получить желтые кристаллы золотохлористоводородной кислоты HAuCl4·3H2O.
С галогенами без нагревания в отсутствие влаги золото не реагирует. При нагревании порошка золота с галогенами или с дифторидом ксенона образуются галогениды золота:
2Au + 3Cl2 = 2AuCl3,
2Au + 3XeF2 = 2AuF3 + 3Xe
В воде растворимы только AuCl3 и AuBr3, состоящие из димерных молекул:
Термическим разложением гексафторауратов (V), например, O2+[AuF6]– получены фториды золота AuF5 и AuF7. Их также можно получить, окисляя золото или его трифторид с помощью KrF2 и XeF6.
Моногалогениды золота AuCl, AuBr и AuI образуются при нагревании в вакууме соответствующих высших галогенидов. При нагревании они или разлагаются:
2AuCl = 2Au + Cl2
или диспропорционируют:
3AuBr = AuBr3 + 2Au.](/documents_3/7071f23e51236a1a06da7dcf68d3ddca/img6.jpg)
Описание слайда:
Физические и химические свойства
Золото — желтый металл с кубической гранецентрированной решеткой ( a = 0,40786 нм). Температура плавления 1064,4 °C, температура кипения 2880 °C, плотность 19,32 кг/дм3. Обладает исключительной пластичностью, теплопроводностью и электропроводимостью. Шарик золота диаметром в 1 мм можно расплющить в тончайший лист, просвечивающий голубовато-зеленым цветом, площадью 50 м2. Толщина самых тонких листочков золота 0,1 мкм. Из золота можно вытянуть тончайшие нити.
Золото устойчиво на воздухе и в воде. С кислородом, азотом, водородом, фосфором, сурьмой и углеродом непосредственно не взаимодействует. Антимонид AuSb2 и фосфид золота Au2P3 получают косвенными путями.
В ряду стандартных потенциалов золото расположено правее водорода, поэтому с неокисляющими кислотами в реакции не вступает. Растворяется в горячей селеновой кислоте:
6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O,
в концентрированной соляной кислоте при пропускании через раствор хлора:
2Au + 3Cl2 + 2HCl = 2H[AuCl4]
При аккуратном упаривании получаемого раствора можно получить желтые кристаллы золотохлористоводородной кислоты HAuCl4·3H2O.
С галогенами без нагревания в отсутствие влаги золото не реагирует. При нагревании порошка золота с галогенами или с дифторидом ксенона образуются галогениды золота:
2Au + 3Cl2 = 2AuCl3,
2Au + 3XeF2 = 2AuF3 + 3Xe
В воде растворимы только AuCl3 и AuBr3, состоящие из димерных молекул:
Термическим разложением гексафторауратов (V), например, O2+[AuF6]– получены фториды золота AuF5 и AuF7. Их также можно получить, окисляя золото или его трифторид с помощью KrF2 и XeF6.
Моногалогениды золота AuCl, AuBr и AuI образуются при нагревании в вакууме соответствующих высших галогенидов. При нагревании они или разлагаются:
2AuCl = 2Au + Cl2
или диспропорционируют:
3AuBr = AuBr3 + 2Au.
Слайд 8


Описание слайда:
Применение
Золото и его сплавы используют для изготовления ювелирных изделий, монет, медалей, зубных протезов, деталей химической аппаратуры, электрических контактов и проводов, изделий микроэлектроники, для плакирования труб в химической промышленности, в производстве припоев, катализаторов, часов, для окрашивания стекол, изготовления перьев для авторучек, нанесения покрытий на металлические поверхности. Обычно золото используют в сплаве с серебром или палладием (белое золото; также называют сплав золота с платиной и другими металлами). Содержание золота в сплаве обозначают государственным клеймом. Золото 583 пробы является сплавом с 58,3% золота по массе. См также Золото (в экономике).
Физиологическое действие
Некоторые соединения золота токсичны, накапливаются в почках, печени, селезенке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении.
Скачать презентацию на тему Металл золото можно ниже:
Похожие презентации

Презентация Интерференция. Дифрак...
2785 просмотров

Презентация Влияние магнитных пол...
1163 просмотра

Презентация Силы всемирного тягот...
1149 просмотров

Презентация Электромагнитные коле...
1401 просмотр

Презентация Второй закон Ньютона
1027 просмотров

Презентация Прямолинейное равноус...
987 просмотров

Презентация Перспективы развития ...
2099 просмотров

Презентация Скорость механическог...
1332 просмотра

Презентация Механика Ньютона
1531 просмотр

Презентация Теория фотоэффекта
1602 просмотра

Презентация Использование информа...
793 просмотра

Презентация Виды излучений
1058 просмотров

Презентация Фотоэффект (11 класс)
1707 просмотров

Презентация Магнитное поле и его ...
2124 просмотра

Презентация Принцип Гюйгенса. Зак...
1128 просмотров

Презентация Сила тока
2347 просмотров

Презентация Тепловое движение. Вн...
1115 просмотров

Презентация Давление газов. Закон...
894 просмотра

Презентация Ядерная физика (9 кла...
1780 просмотров

Презентация Давление на дне морей...
1511 просмотров

Презентация Конспект и презентаци...
804 просмотра

Презентация Электромагнитная прир...
2455 просмотров

Презентация Тепловые электростанц...
1536 просмотров

Презентация Светодиоды
7771 просмотр

Презентация Затухающие колебания
668 просмотров

Презентация Законы постоянного то...
1069 просмотров

Презентация Криволинейное движени...
1253 просмотра

Презентация Действие электрическо...
1282 просмотра

Презентация Расчет сопротивления ...
1356 просмотров

Презентация Теория вероятностей. ...
1260 просмотров
114785114792114804114798114793114794114800114784114786114783114795114789114810114788114799114802114806114805114791114809114790114787114796114797114812114808114811114801114803114807
Отправить презентацию на почту
0%
Презентация успешно отправлена!
Ошибка! Введите корректный Email!