Karmarkar Algorithm презентация

Содержание


Karmarkar Algorithm
 Anup Das, Aissan Dalvandi, Narmada Sambaturu, Seung Min, andContents
 Overview
 Projective transformation
 Orthogonal projection
 Complexity analysis
 Transformation to Karmarkar’sLP Solutions
 Simplex
 Dantzig 1947
 Ellipsoid
 Kachian 1979
 Interior Point
 AffineSimplex vs Interior PointLinear ProgrammingKarmarkar’s AlgorithmStep 2.1Step 2.2Big PictureContents
 Overview
 Transformation to Karmarkar’s canonical form
 Projective transformation
 Orthogonal projection
Karmarkar’s AlgorithmProjective TransformationProjective transformationProblem transformation:Problem transformation:Karmarkar’s AlgorithmOrthogonal ProjectionOrthogonal ProjectionOrthogonal ProjectionOrthogonal ProjectionOrthogonal ProjectionCalculate step sizeMovement and inverse transformationBig PictureMatlab DemoContents
 Overview
 Projective transformation
 Orthogonal projection
 Complexity analysis
 Transformation to Karmarkar’sRunning Time
 Total complexity of iterative algorithm = 
 (# of# of iterations# of iterations# of iterations# of iterations# of iterations# of iterations# of iterations# of iterationsRank-one modificationMethodRank-one modification (cont)Performance AnalysisPerformance analysis - 2Performance Analysis - 3Performance Analysis - 4Performance Analysis - 5Contents
 Overview
 Transformation to Karmarkar’s canonical form
 Projective transformation
 Orthogonal projection
Transform to canonical formStep 1:Convert LP to a feasibility problem
 Combine primal and dualStep 2: Convert inequality to equality
 Introduce slack and surplus variableStep 3: Convert feasibility problem to LPStep 3: Convert feasibility problem to LP
 Change of notationStep 5: Get the minimum value of Canonical formStep 5: Get the minimum value of Canonical form 
 TheReferences
 Narendra Karmarkar (1984). "A New Polynomial Time Algorithm for LinearReferences
 Gill, Philip E.; Murray, Walter, Saunders, Michael A., Tomlin, J.Q&A



Слайды и текст этой презентации
Слайд 1
Описание слайда:
Karmarkar Algorithm Anup Das, Aissan Dalvandi, Narmada Sambaturu, Seung Min, and Le Tuan Anh


Слайд 2
Описание слайда:
Contents Overview Projective transformation Orthogonal projection Complexity analysis Transformation to Karmarkar’s canonical form

Слайд 3
Описание слайда:
LP Solutions Simplex Dantzig 1947 Ellipsoid Kachian 1979 Interior Point Affine Method 1967 Log Barrier Method 1977 Projective Method 1984 Narendra Karmarkar form AT&T Bell Labs

Слайд 4
Описание слайда:
Simplex vs Interior Point

Слайд 5
Описание слайда:
Linear Programming

Слайд 6
Описание слайда:
Karmarkar’s Algorithm

Слайд 7
Описание слайда:
Step 2.1

Слайд 8
Описание слайда:
Step 2.2

Слайд 9
Описание слайда:
Big Picture

Слайд 10
Описание слайда:
Contents Overview Transformation to Karmarkar’s canonical form Projective transformation Orthogonal projection Complexity analysis

Слайд 11
Описание слайда:
Karmarkar’s Algorithm

Слайд 12
Описание слайда:
Projective Transformation

Слайд 13
Описание слайда:
Projective transformation

Слайд 14
Описание слайда:
Problem transformation:

Слайд 15
Описание слайда:
Problem transformation:

Слайд 16
Описание слайда:
Karmarkar’s Algorithm

Слайд 17
Описание слайда:
Orthogonal Projection

Слайд 18
Описание слайда:
Orthogonal Projection

Слайд 19
Описание слайда:
Orthogonal Projection

Слайд 20
Описание слайда:
Orthogonal Projection

Слайд 21
Описание слайда:
Orthogonal Projection

Слайд 22
Описание слайда:
Calculate step size

Слайд 23
Описание слайда:
Movement and inverse transformation

Слайд 24
Описание слайда:
Big Picture

Слайд 25
Описание слайда:
Matlab Demo

Слайд 26
Описание слайда:
Contents Overview Projective transformation Orthogonal projection Complexity analysis Transformation to Karmarkar’s canonical form

Слайд 27
Описание слайда:
Running Time Total complexity of iterative algorithm = (# of iterations) x (operations in each iteration) We will prove that the # of iterations = O(nL) Operations in each iteration = O(n2.5) Therefore running time of Karmarkar’s algorithm = O(n3.5L)

Слайд 28
Описание слайда:
# of iterations

Слайд 29
Описание слайда:
# of iterations

Слайд 30
Описание слайда:
# of iterations

Слайд 31
Описание слайда:
# of iterations

Слайд 32
Описание слайда:
# of iterations

Слайд 33
Описание слайда:
# of iterations

Слайд 34
Описание слайда:
# of iterations

Слайд 35
Описание слайда:
# of iterations

Слайд 36
Описание слайда:
Rank-one modification

Слайд 37
Описание слайда:
Method

Слайд 38
Описание слайда:
Rank-one modification (cont)

Слайд 39
Описание слайда:
Performance Analysis

Слайд 40
Описание слайда:
Performance analysis - 2

Слайд 41
Описание слайда:
Performance Analysis - 3

Слайд 42
Описание слайда:
Performance Analysis - 4

Слайд 43
Описание слайда:
Performance Analysis - 5

Слайд 44
Описание слайда:
Contents Overview Transformation to Karmarkar’s canonical form Projective transformation Orthogonal projection Complexity analysis

Слайд 45
Описание слайда:
Transform to canonical form

Слайд 46
Описание слайда:
Step 1:Convert LP to a feasibility problem Combine primal and dual problems LP becomes a feasibility problem

Слайд 47
Описание слайда:
Step 2: Convert inequality to equality Introduce slack and surplus variable

Слайд 48
Описание слайда:
Step 3: Convert feasibility problem to LP

Слайд 49
Описание слайда:
Step 3: Convert feasibility problem to LP Change of notation

Слайд 50
Описание слайда:

Слайд 51
Описание слайда:

Слайд 52
Описание слайда:
Step 5: Get the minimum value of Canonical form

Слайд 53
Описание слайда:
Step 5: Get the minimum value of Canonical form The transformed problem is

Слайд 54
Описание слайда:
References Narendra Karmarkar (1984). "A New Polynomial Time Algorithm for Linear Programming” Strang, Gilbert (1 June 1987). "Karmarkar’s algorithm and its place in applied mathematics". The Mathematical Intelligencer (New York: Springer) 9 (2): 4–10. doi:10.1007/BF03025891. ISSN 0343-6993. MR '''883185'‘ Robert J. Vanderbei; Meketon, Marc, Freedman, Barry (1986). "A Modification of Karmarkar's Linear Programming Algorithm". Algorithmica 1: 395–407. doi:10.1007/BF01840454. ^ Kolata, Gina (1989-03-12). "IDEAS & TRENDS; Mathematicians Are Troubled by Claims on Their Recipes". The New York Times.

Слайд 55
Описание слайда:
References Gill, Philip E.; Murray, Walter, Saunders, Michael A., Tomlin, J. A. and Wright, Margaret H. (1986). "On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method". Mathematical Programming 36 (2): 183–209. doi:10.1007/BF02592025. oi:10.1007/BF02592025. ^ Anthony V. Fiacco; Garth P. McCormick (1968). Nonlinear Programming: Sequential Unconstrained Minimization Techniques. New York: Wiley. ISBN 978-0-471-25810-0. Reprinted by SIAM in 1990 as ISBN 978-0-89871-254-4. Andrew Chin (2009). "On Abstraction and Equivalence in Software Patent Doctrine: A Response to Bessen, Meurer and Klemens". Journal Of Intellectual Property Law 16: 214–223.

Слайд 56
Описание слайда:
Q&A


Скачать презентацию на тему Karmarkar Algorithm можно ниже:

Похожие презентации