Презентация, доклад Сравнительный анализ


Вы можете изучить и скачать доклад-презентацию на тему Сравнительный анализ. Презентация на заданную тему содержит 17 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!
Презентации» Математика» Сравнительный анализ
Лекция 3.  Сравнительный анализПонятие выборки
 Генеральная совокупность – это все множество объектов, в отношенииРепрезентативность выборки
 это представительность или способность выборки представлять изучаемые явления достаточноОбъем выборки
 Строгих рекомендаций по предварительному определению требуемого объема выборки неЗависимые и независимые выборки
 Зависимые выборки – это те выборки, вВыбор критерия для сравнения  двух выборокКритерий t-Стьюдента  для независимых выборок
 Проверяет гипотезу о том, чтоСтруктура исходных данных: изучаемый признак(и) измерен у респондентов, каждый из которыхФормула для подсчетов
 где,
  – среднее значение первой выборки
 Критерий t-Стьюдента  для зависимых выборок
 Проверяет гипотезу о том, чтоU-критерий Манна-Уитни для независимых выборок 
 Показывает насколько совпадают (пересекаются) дваТ-критерий Вилкоксона  для зависимых выборок
 В основе лежит упорядочивание величинН-критерий Крускала-Уоллиса для 3 и более независимых выборок
 Применяется для оценкиН-критерий Крускала-Уоллиса
 Условия для применения:
 Измерение должно быть проведено в шкалеКритерий Фишера φ  (Угловое преобразование Фишера)
 Критерий φ (фи) предназначенПример таблицы для расчета коэффициента φКритерий Фишера φ
 Условия для применения:
 Измерение может быть проведено в



Слайды и текст этой презентации
Слайд 1
Описание слайда:
Лекция 3. Сравнительный анализ


Слайд 2
Описание слайда:
Понятие выборки Генеральная совокупность – это все множество объектов, в отношении которого формулируется исследовательская гипотеза. Это не бесконечное по численности, но, как правило, недоступное для сплошного исследования множество потенциальных участников исследования. Выборка – это ограниченная по численности группа объектов (участников исследования, респондентов), специально отбираемая из генеральной совокупности для изучения ее свойств.

Слайд 3
Описание слайда:
Репрезентативность выборки это представительность или способность выборки представлять изучаемые явления достаточно полно – с точки зрения их изменчивости в генеральной совокупности. Приемы достижения репрезентативности: Простой случайный (рандомизированный) отбор. Стратифицированный случайный отбор (отбор по свойствам генеральной совокупности).

Слайд 4
Описание слайда:
Объем выборки Строгих рекомендаций по предварительному определению требуемого объема выборки не существует. Наиболее общие рекомендации: При разработке диагностической методики – от 200 до 1000-2500 человек. При сравнении двух выборок, общая численность – 50-60 человек. При изучении взаимосвязи – не меньше 30 человек. Чем больше изменчивость свойства, тем больше должен быть объем выборки. Изменчивость можно уменьшить увеличивая однородность выборки, но при этом уменьшаются возможности генерализации выводов.

Слайд 5
Описание слайда:
Зависимые и независимые выборки Зависимые выборки – это те выборки, в которых каждому респонденту одной выборки поставлен в соответствие по определенному критерию респондент другой выборки. Независимые выборки – это те выборки, в которых вероятность отбора любого респондента одной выборки не зависит от отбора любого из респондентов другой выборки.

Слайд 6
Описание слайда:
Выбор критерия для сравнения двух выборок

Слайд 7
Описание слайда:
Критерий t-Стьюдента для независимых выборок Проверяет гипотезу о том, что средние значения двух генеральных совокупностей из которых извлечены независимые выборки, отличаются друг от друга. Исходные предположения: Одна выборка извлекается из одной генеральной совокупности, другая – из другой (значения измеренных признаков гипотетически не должны коррелировать между собой). В обеих выборках распределение приблизительно соответствует нормальному закону. Дисперсии признаков в двух выборках примерно одинаковы.

Слайд 8
Описание слайда:
Структура исходных данных: изучаемый признак(и) измерен у респондентов, каждый из которых принадлежит к одной из сравниваемых выборок. Ограничения: Распределения существенно не отличаются от нормального закона в обеих выборках. При разной численности выборок дисперсии статистически достоверно не различаются (проверяется по критерию F-Фишера или по критерию Ливена.

Слайд 9
Описание слайда:
Формула для подсчетов где, – среднее значение первой выборки - среднее значение второй выборки - стандартное отклонение по первой выборке - стандартное отклонение по второй выборке

Слайд 10
Описание слайда:
Критерий t-Стьюдента для зависимых выборок Проверяет гипотезу о том, что средние значения двух генеральных совокупностей, их которых извлечены сравниваемые зависимые выборки, отличаются друг от друга. Исходные предположения: Каждому представителю одной выборки поставлен в соответствие представитель другой выборки. Данные двух выборок положительно коррелируют. Распределение в обеих выборках соответствует нормальному закону. Структура исходных данных: имеется по два значения изучаемого признака(ов).

Слайд 11
Описание слайда:
U-критерий Манна-Уитни для независимых выборок Показывает насколько совпадают (пересекаются) два ряда значений измеренного признака (ов). Условия для применения: Распределение хотя бы в одной выборке отличается от нормального вида. Небольшой объем выборки (больше 100 человек – используют параметрические критерии, меньше 10 человек – непараметрические, но результаты считаются предварительными). Нет гомогенности дисперсий при сравнении средних значений.

Слайд 12
Описание слайда:
Т-критерий Вилкоксона для зависимых выборок В основе лежит упорядочивание величин разностей (сдвигов) значений признака в каждой паре его измерений. Идея критерия заключается в подсчете вероятности получения минимальной из положительных и отрицательных разностей при условии, что распределение положительных или отрицательных разностей равновероятно и равно

Слайд 13
Описание слайда:
Н-критерий Крускала-Уоллиса для 3 и более независимых выборок Применяется для оценки различий по степени выраженности анализируемого признака одновременно между тремя, четырьмя и более выборками. Позволяет выявить степень изменения признака в выборках, не указывая на направление этих изменений.

Слайд 14
Описание слайда:
Н-критерий Крускала-Уоллиса Условия для применения: Измерение должно быть проведено в шкале порядка, интервалов или отношений. Выборки должны быть независимыми. Допускается разное число респондентов в сопоставляемых выборках. При сопоставлении трех выборок допускается, чтобы в одной из них было n=3, а в двух других n=2. Но в этом случае различия могут быть зафиксированы только на уровне средней значимости.

Слайд 15
Описание слайда:
Критерий Фишера φ (Угловое преобразование Фишера) Критерий φ (фи) предназначен для сопоставления двух рядов выборочных значений по частоте встречаемости какого-либо признака. Этот критерий можно применять на любых выборках – зависимых и независимых. А также можно оценивать частоту встречаемости признака и количественной, и качественной переменной.

Слайд 16
Описание слайда:
Пример таблицы для расчета коэффициента φ

Слайд 17
Описание слайда:
Критерий Фишера φ Условия для применения: Измерение может быть проведено в любой шкале. Характеристики выборок могут быть любыми. Нижняя граница – в одной из выборок может быть только 2 наблюдения, при этом во второй должно быть не менее 30 наблюдений. Верхняя граница не определена. При малых объемах выборок, нижние границы выборок должны содержать не менее 5 наблюдений каждая.


Скачать презентацию на тему Сравнительный анализ можно ниже:

Похожие презентации